Глава XVIII О МОЛЕКУЛЯРНОМ ПРИТЯЖЕНИИ16
Притяжение исчезает между телами незначительных размеров и появляется снова в их элементах, принимая бесконечно разнообразные формы. Твёрдость, кристалличность, преломление света, поднятие и понижение жидкостей в капиллярных пространствах, а также все химические реакции суть результаты действия сил, познание которых является одной из главных целей изучения природы. Так, материя подчинена власти различных притягивающих сил: одна из них, бесконечно простираясь в пространстве, управляет движениями Земли и небесных сил; всё, что относится к внутреннему строению составляющих их веществ, зависит главным образом от других сил, действие которых чувствительно только на неуловимо малых расстояниях. Поэтому почти невозможно познать законы их изменения с расстоянием. К счастью, свойство быть заметными лишь в непосредственной близости контакта достаточно, чтобы подвергнуть анализу большое число интересных явлений, зависящих от этих сил. Здесь я представлю вкратце главные результаты этого анализа и этим дополню математическую теорию притягивающих сил в природе.
Мы видели в книге I, что световой луч, переходя из пустоты в прозрачную среду, отклоняется так, что отношение синуса угла падения к синусу угла преломления постоянно. Этот фундаментальный закон диоптрики есть результат действия среды на свет, причём мы предполагаем, что это действие заметно только на неощутимых расстояниях. В самом деле, представим себе среду, ограниченную плоскостью. Ясно, что молекула света перед тем, как её пересечь, притягивается со всех сторон от перпендикуляра к этой поверхности одинаково, потому что на ощутимом расстоянии от молекулы со всех сторон находится равное число притягивающих молекул. Поэтому их равнодействующая направлена по этому перпендикуляру. После вхождения в среду молекула света продолжает притягиваться вдоль перпендикуляра к поверхности. Если вообразить эту среду разделённой на бесконечно тонкие слои, параллельные её поверхности, то поскольку притяжение слоёв, лежащих выше притягиваемой молекулы, уничтожается притяжением равного числа нижележащих слоёв, мы увидим, что молекула света притягивается в точности так, как она притягивалась бы на том же расстоянии от поверхности перед тем, как её пересечь. Поэтому испытываемое ею притяжение неощутимо, когда она заметно проникла в прозрачную среду, и её движение тогда делается равномерным и прямолинейным. Из принципа сохранения живых сил, изложенного в книге III, вытекает, что квадрат начальной скорости молекулы света, разложенной перпендикулярно к поверхности среды, увеличивается всегда на одну и ту же величину, какова ни была бы эта скорость. Параллельно этой поверхности действием среды скорость не изменяется, и, следовательно, возрастание квадрата полной скорости, как и самой этой скорости, не зависит от начального направления светового луча. Отношение скорости в направлении, параллельном поверхности, к начальной скорости образует синус угла падения, а её отношение к скорости в среде есть синус угла преломления. Поэтому эти два синуса относятся друг к другу как скорости света до и после его входа в среду, и, следовательно, они находятся в постоянном отношении. Разность их квадратов, делённая на квадрат синуса преломления и умноженная на квадрат скорости света в пустоте, выражает действие среды на луч. Разделив его на удельную плотность этой среды, получим её
Искривлённая поверхность, ограничивающая прозрачную среду, может быть заменена плоскостью, касательной в точке её пересечения с лучом, так как поскольку действие тел на свет заметно только на неуловимых расстояниях, можно пренебречь действием мениска, заключённого между касательной плоскостью и поверхностью. Поэтому, восставив перпендикуляр к этой поверхности в точке, где её встречает луч, и взяв синусы углов падения и преломления в том же отношении, как если бы поверхность была плоской, мы получим направление луча в среде.
Переходя из одной среды в другую, свет преломляется таким образом, что синусы углов падения и преломления находятся в постоянном отношении, но тогда преломление света вызывается только разностью действий, испытываемых им со стороны этих сред. Когда один луч проходит несколько прозрачных сред, ограниченных плоскими и параллельными поверхностями, его скорость в каждой среде равна и параллельна той, которую он имел бы, если бы прошёл в эту среду непосредственно из пустоты. Вообще, каким бы образом световой луч ни приходил из пустоты в прозрачную среду, его скорость одинакова.
Гипотеза о незаметности действия на ощутимых расстояниях позволяет распространить эти результаты на бесконечно тонкие слои прозрачной среды с переменной плотностью.