Этот принцип включает известный в гидростатике принцип уменьшения веса тел, погруженных в жидкость. Чтобы это понять, достаточно исключить то, что относится к капиллярному действию, которое полностью исчезает, если тело вполне погружено в жидкость под её уровнем. Для доказательства этого вообразим вертикальный канал, достаточно широкий, чтобы охватить тело и весь ощутимый объём жидкости, который оно своим капиллярным действием поднимает или оставляет пустым. Предположим, что этот канал, войдя в жидкость, становится горизонтальным и затем вновь поднимается вертикально до поверхности жидкости, всё время сохраняя свою ширину. Ясно, что веса, заключённые в двух вертикальных ветвях этого канала, в состоянии равновесия должны быть одинаковы. Следовательно, необходимо, чтобы тело, благодаря своей относительной лёгкости, компенсировало вес поднятой капиллярным действием жидкости или, если это действие его вдавливает, надо, чтобы своей относительной тяжестью оно компенсировало произведённую этим пустоту. В первом случае действие капиллярности стремится погрузить тело в жидкость, во втором случае это действие приподнимает тело, которое благодаря этому, обладая даже большим удельным весом, может держаться на поверхности жидкости.
Именно таким образом цилиндр из очень тонкой стали, контакт которого с водой предотвращён лаковым покрытием или обволакивающим его слоем воздуха, держится на поверхности этой жидкости. Если два одинаковых и параллельных цилиндра поместить горизонтально на воде с таким расчётом, чтобы они соприкасались, но один выступал из-за другого, они немедленно начинают скользить один вдоль другого, чтобы стать своими концами на одном уровне. Так как жидкость больше сжата у того конца цилиндра, который соприкасается с другим цилиндром, чем у противоположного конца, основания этих последних испытывают большее давление, чем два других. Вследствие этого каждый цилиндр всё больше и больше стремится соединиться с другим; так как ускоряющие силы всегда выносят систему тел, выведенную из равновесия, за пределы этого состояния, два цилиндра должны попеременно обгонять один другого, делая колебания, постепенно уменьшающиеся из-за испытываемого ими сопротивления и наконец прекращающиеся. Тогда, придя в состояние покоя, эти цилиндры своими концами оказываются на одном уровне.
Явления, представляемые жидкой каплей, находящейся в движении или висящей в равновесии, будь то в конической капиллярной трубке или между двумя немного наклонёнными одна к другой плоскостями, у которых пересечение горизонтально, очень пригодны для проверки теории. Маленький столбик воды или спирта в конической стеклянной трубке, открытой с обоих концов и удерживаемой горизонтально, перемещается к вершине трубки; и мы видим, что это так и должно быть. В самом деле, поверхность жидкого столба вогнута на обоих этих концах. Но радиус этой поверхности меньше со стороны вершины, чем со стороны основания. Поэтому действие жидкости самой на себя меньше со стороны вершины, и, следовательно, столб жидкости должен стремиться в эту сторону. Если жидкость — ртуть, поверхность выпукла, и её радиус также меньше у вершины, чем у основания, но вследствие выпуклости действие жидкости на саму себя больше у вершины, и столб жидкости должен перемещаться к основанию трубки, что согласуется с экспериментами.
Можно уравновешивать эти действия жидкости самой на себя собственным весом столба жидкости и поддерживать её в равновесии, наклоняя ось трубки к горизонту. Очень простой подсчёт позволяет видеть, что если длина столба жидкости незначительна и если трубка очень узкая, синус угла наклонения оси к горизонту в случае равновесия почти в точности обратно пропорционален квадрату расстояния от середины столба жидкости до вершины конуса и равен дроби, у которой знаменатель равен этому расстоянию, а числитель — высоте, на которую жидкость поднялась бы в цилиндрической трубке, у которой диаметр был бы равен диаметру конуса в середине столба. Подобные же выводы имеют место для жидкой капли, помещённой между двумя плоскостями, соприкасающимися своими краями, которые предполагаются горизонтальными, причём плоскости образуют между собой угол, равный углу между осью конуса и его сторонами. Чтобы капля находилась в равновесии, наклон к горизонту плоскости, разделяющей на равные части угол, образованный плоскостями, должен быть таким же, как у оси конуса. Опыты, относящиеся к этому вопросу, подтверждают выводы теории.
Форма жидкостей, заключённых между плоскостями, составляющими между собой произвольный угол, фигура жидких капель, опирающихся на плоскость, истечение жидкостей из капиллярных сифонов и множество других подобных явлений, как и предыдущие, были подвергнуты анализу. Согласие его результатов с опытами неоспоримо доказывает существование во всех телах уменьшающегося с исключительной быстротой молекулярного притяжения, которое, модифицируясь в жидкостях формой содержащих их узких пространств, производит все явления капиллярности.