При описанных выше движениях взаимные положения звёзд сохраняются. Но великий наблюдатель,
2 которому мы обязаны открытием нутации, обнаружил у всех этих светил общее периодическое движение, которое немного изменяет их взаимное расположение. Чтобы представить себе это движение, надо вообразить, что каждая звезда ежегодно описывает маленькую параллельную эклиптике окружность, центр которой соответствует среднему положению звезды, а диаметр, видимый с Земли, равен 125сс [40."5], и что звезда движется по этой окружности, как Солнце по своей орбите, однако так, что Солнце всегда опережает её на 100g [90°]. Эта окружность проектируется на поверхность неба в виде эллипса, большее или меньшее сжатие которого зависит от высоты звезды над эклиптикой, причём малый радиус его относится к большому как синус этой высоты к радиусу. Отсюда происходят все изменения этого периодического движения звёзд, называемогоНезависимо от этих общих движений, некоторые звёзды имеют собственные очень медленные, но с течением времени ставшие заметными движения. Они до сих пор были заметны главным образом у Сириуса и Арктура — двух из наиболее ярких звёзд. Но всё приводит к мысли, что будущие века обнаружат подобные движения и у других звёзд.
8Глава XIV О ФИГУРЕ ЗЕМЛИ, ОБ ИЗМЕНЕНИИ СИЛЫ ТЯЖЕСТИ НА ЕЕ ПОВЕРХНОСТИ И О ДЕСЯТИЧНОЙ СИСТЕМЕ МЕР И ВЕСОВ
Вернёмся с неба на Землю и посмотрим, что узнали мы из наблюдений о её размерах и фигуре, которая, как мы уже видели, очень близка к сферической. Сила тяжести, везде направленная к её центру, удерживает тела на её поверхности, хотя в диаметрально противоположных точках, или у антиподов, они имеют противоположные положения. Небо и звёзды всегда видны над Землёй, так как понятия подъёма или опускания относятся только к направлению силы тяжести.
С того момента, когда человек узнал о сферичности Земли, на которой он живёт, любопытство побуждало его измерить её размеры. Поэтому очень вероятно, что первые такие попытки относятся к временам, гораздо более древним, чем те, о которых история сохранила нам сведения, и что их результаты были утеряны во время физических и моральных потрясений, перенесённых Землёй. Отношения многих мер, употреблявшихся в глубокой древности, как между собой, так и к длине земной окружности, заставляют подозревать, что в очень древние времена эта длина была не только хорошо известна, но и служила основой для совершенной системы мер, следы которой находят в Египте и в Азии.
9 Как бы то ни было, первое точное измерение Земли, о котором мы имеем достоверные сведения, было выполнено Пикаром во Франции в конце позапрошлого века и затем несколько раз проверялось. Принцип этого измерения легко понять. Перемещаясь к северу, мы видим, что полюс всё больше и больше поднимается: меридианная высота звёзд, расположенных на севере, увеличивается, а у звёзд, расположенных на юге, уменьшается. Некоторые из них даже делаются невидимыми. Первые понятия о кривизне Земли несомненно обязаны наблюдениям этих явлений, которые не могли не обратить на себя внимание людей в первые века существования человеческих обществ, когда сезоны и их возвращения различали лишь по восходу и заходу главных звёзд, сравнивая их с восходами и заходами Солнца. Возвышение или понижение звёзд позволяет определить угол, который образуют в точке своего пересечения отвесные линии, восставленные на концах проведённой по Земле дуги, так как этот угол, очевидно, равен разности меридианных высот одной и той же звезды без угла, под которым был бы виден из центра этой звезды пройденный путь, а этот последний угол, как в этом убедились, неощутимо мал. После этого остаётся только измерить этот пройденный путь, но было бы долго и трудно применять наши обычные способы измерения к такому большому расстоянию. Гораздо проще связать его концы цепью треугольников с базой в 12 000—15 000 м и, учитывая точность, с которой можно определить углы этих треугольников, получить очень точно его длину. Таким образом была измерена дуга земного меридиана, пересекающего Францию. Равная 1/100 прямого угла, часть этой дуги, середина которой соответствует высоте полюса в 50g [45°], почти в точности равна 100 000 м.