Чтобы уменьшить видимое движение Солнца, достаточно удалить его от Земли. Но если бы изменение движения Солнца имело одну эту причину и если бы истинная скорость была постоянна, его видимая скорость уменьшилась бы в том же отношении, что и видимый диаметр. Она же уменьшается в отношении, вдвое большем. Значит, при удалении Солнца от Земли в его истинном движений происходит действительное замедление. Совместным действием этого замедления и увеличения расстояния угловое движение Солнца уменьшается пропорционально увеличению квадрата расстояния, так что произведение его на этот квадрат весьма близко к постоянной величине. Все измерения видимого диаметра Солнца и сравнение их с наблюдениями его суточного движения подтверждают этот вывод.
Вообразим прямую, проходящую через центры Солнца и Земли, и назовём её
Если изо дня в день отмечать положение и длину радиуса-вектора солнечной орбиты и провести кривую, соединяющую концы этих радиусов, то, исходя из предыдущих данных, увидим, что эта кривая несколько вытянута в направлении прямой, проходящей через центр Земли и соединяющей точки наибольшего и наименьшего расстояний до Солнца; подобие её эллипсу породило мысль сравнить эти фигуры между собой, и в результате была установлена их идентичность. Отсюда следовало, что
Солнечный эллипс мало отличается от окружности, потому что, как мы уже видели, самое большое расстояние Солнца от Земли отличается от среднего всего на 0.0168 этого расстояния. Этот избыток и есть тот самый эксцентриситет, очень медленное уменьшение которого, едва ощутимое на протяжении одного века, отмечается в наблюдениях.
Чтобы составить точное представление об эллиптическом движении Солнца, вообразим точку, движущуюся равномерно по окружности с центром в центре Земли и с радиусом, равным среднему расстоянию до Солнца. Кроме того, предположим, что эта точка и Солнце вместе выходят из перигея и что угловое движение точки равно среднему угловому движению Солнца. В то время как радиус-вектор точки равномерно вращается вокруг Земли, радиус-вектор Солнца движется неравномерно, всегда образуя с перигейным расстоянием и дугами эллипса секторы, пропорциональные времени. Сперва он опережает радиус-вектор точки л составляет с ним угол, который, достигнув некоторого предела, уменьшается и снова становится равным нулю, когда Солнце находится в своём апогее. В этот момент оба радиуса-вектора совпадают с большой осью. Во второй половине эллипса радиус-вектор точки в свою очередь опережает радиус Солнца и образует с ним углы в точности такие же, какие были в первой половине пути на соответствующих угловых расстояниях от перигея, где он снова совпадает с радиусом-вектором Солнца и большой осью эллипса.