Читаем Изложение системы мира полностью

Для этого рассмотрим действие Солнца на кольцо, расположенное в плоскости экватора. Если представить себе, что масса этого светила распределена равномерно по окружности его орбиты, предполагаемой круговою, то очевидно, что воздействие этой твёрдой орбиты представит среднее воздействие Солнца. Если разложить это воздействие на каждую точку кольца, поднятую над эклиптикой, на две составляющие, из которых одна находится в плоскости кольца, а другая — перпендикулярна к этой плоскости, то легко видеть, что равнодействующая этих последних составляющих, приложенных ко всем этим точкам, перпендикулярна к той же плоскости и приложена к диаметру кольца, перпендикулярного к линии его узлов. Воздействие солнечной орбиты на часть кольца, лежащую ниже эклиптики, даёт подобную же равнодействующую, перпендикулярную к плоскости кольца и приложенную к нижней части того же диаметра. Эти две равнодействующие стремятся приблизить кольцо к эклиптике, заставляя его двигаться к линии узлов. Поэтому при отсутствии вращательного движения кольца его наклон к эклиптике под влиянием среднего действия Солнца уменьшился бы, а его узлы были бы неподвижны. Но мы предполагаем здесь, что кольцо вращается одновременно с Землёй. Это движение сохраняет постоянство наклона кольца к эклиптике, но превращает действие Солнца в попятное движение узлов. Это вращательное движение передаёт узлам то изменение, которое при отсутствии вращения перешло бы на наклонность, а наклонности даёт постоянство, которым обладали бы узлы. Чтобы понять причину этого любопытного изменения, повернём на бесконечно малую величину положение кольца таким образом, чтобы плоскости этих двух положений пересекались по диаметру, перпендикулярному линии узлов. В конце какого-либо момента движение каждой из его точек можно разложить на два: первое — одно должно остаться в следующий момент, и второе — перпендикулярное к плоскости кольца должно быть уничтожено. Ясно, что равнодействующая этих вторых движений относительно всех точек верхней части кольца будет перпендикулярна к его плоскости и находиться на диаметре, о котором мы говорили. Это же будет справедливо и для нижней части кольца. Для уничтожения этой равнодействующей действием солнечной орбиты и сохранения кольца в равновесии относительно своего центра под действием этих сил, необходимо, чтобы они были противоположны и их моменты относительно этой точки были одинаковыми. Первое из этих условий предусматривает, чтобы изменение предполагаемых нами положений кольца было попятным; а второе условие определяет величину этого изменения и, следовательно, скорость попятного движения его узлов. Легко видеть, что эта скорость пропорциональна массе Солнца, делённой на куб его расстояния от Земли и умноженной на косинус наклонности эклиптики.

Так как плоскости кольца в двух последовательных положениях пересекаются по диаметру, перпендикулярному линии узлов, наклонности этих двух плоскостей к эклиптике постоянны. Следовательно, наклонность кольца не изменяется средним влиянием действия Солнца.

Как показывает анализ, всё, что мы видели относительно кольца, имеет место и для любого сфероида, мало отличающегося от сферы. Среднее действие Солнца вызывает движение равноденствий, пропорциональное массе этого светила, разделённой на куб его расстояния и умноженной на косинус наклонности эклиптики. Это движение — попятное, если сфероид сжат у полюсов. Его скорость зависит от этого сжатия, но наклонность экватора к эклиптике всегда остаётся неизменной.

Действие Луны подобным же образом создаёт попятное движение узлов земного экватора в плоскости её орбиты. Но положение этой плоскости и её наклон к экватору непрерывно изменяются под воздействием Солнца; и попятное движение узлов экватора на лунной орбите, производимое действием Луны и пропорциональное косинусу этого наклона, также переменное. Впрочем, если предположить его равномерным, пришлось бы в зависимости от положения лунной орбиты изменять попятное движение равноденственных точек и наклонность экватора к эклиптике. Довольно простых вычислений достаточно, чтобы показать, что из действия Луны в сочетании с движением плоскости её орбиты, вытекает: 1. Среднее движение точек равноденствия равно тому, которое это светило произвело бы, если бы двигалось в самой плоскости эклиптики. 2. Неравенство, вычитаемое из попятного движения, пропорционально синусу долготы восходящего узла лунной орбиты. 3. Уменьшение наклонности эклиптики пропорционально косинусу того же угла. Эти два неравенства в совокупности представляются движением земной оси, мысленно продолженной до неба, по небольшому эллипсу в соответствии с законами, изложенными в XII главе первой книги. Большая ось этого эллипса относится к малой оси как косинус наклонности эклиптики относится к косинусу двойной величины этой же наклонности.

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История