Поскольку присутствие Солнца над горизонтом является причиной тепла, может показаться, что летом температура должна быть такою же, как весной, и зимой — такой же, как осенью. Но температура не является мгновенным эффектом присутствия Солнца, а представляет результат его длительного воздействия. Дневная температура достигает максимума только после того, как это светило достигнет наибольшей высоты над горизонтом, годовая — лишь после летнего солнцестояния.
Климат имеет большие различия, которые мы проследим от экватора до полюсов. На экваторе горизонт делит на две равные части все параллели. Поэтому здесь день всегда равен ночи. Во время равноденствий в полдень Солнце поднимается до самого зенита. Во время солнцестояний меридианные высоты этого светила наименьшие и равны дополнению наклонности эклиптики к экватору; солнечные тени в эти периоды имеют противоположные направления, чего никогда не бывает в наших широтах, где в полдень они всегда направлены на север. Отсюда следует, что на экваторе, строго говоря, в каждом году бывает две зимы и два лета. То же имеет место во всех странах, где высота полюса меньше наклона эклиптики. Вне этих областей в году бывает только одна зима и одно лето, поскольку Солнце здесь никогда не поднимается до зенита; самый длинный день увеличивается и самый короткий уменьшается по мере приближения к полюсу, и если зенит удалён от него лишь на угол, равный наклону эклиптики, Солнце не заходит во время летнего солнцестояния и не восходит во время зимнего. Ещё ближе к полюсу время присутствия и отсутствия Солнца над горизонтом в периоды солнцестояний достигает многих дней и даже месяцев. Наконец, на самом полюсе, где горизонт является экватором, Солнце всегда над горизонтом, если оно с той же стороны от экватора, что и полюс, и неизменно под ним, если Солнце находится по другую сторону от экватора. Следовательно, в году бывает только один день и одна ночь.
Проследим более подробно движение Солнца. Прежде всего наблюдается неравенство интервалов времени, разделяющих равноденствия и солнцестояния: проходит приблизительно на 8 дней больше между весенним и осенним равноденствиями, чем между осенним и весенним. Следовательно, движение Солнца неравномерно. Точные и многократные наблюдения показали, что оно быстрее всего в точке солнечной орбиты, расположенной вблизи зимнего солнцестояния, и медленнее всего в противоположной точке орбиты — около летнего солнцестояния. В первом случае Солнце за сутки перемещается на l.
g1327 [1.°0194] и только на l.g0591 [0.°9532] — во втором. Таким образом, в течение года суточное движение Солнца изменяется в сторону увеличения и уменьшения на триста тридцать восемь десятитысячных от его среднего значения.Эти изменения, накапливаясь, вызывают очень заметное неравенство в движении Солнца. Чтобы определить его закон и, вообще, законы всех периодических неравенств, можно положить, что синусы и косинусы углов, принимая те же значения при каждом обороте по мере того, как эти углы возрастают, могут представлять эти неравенства. Если выразить таким способом все неравенства небесных движений, то трудность будет заключаться только в отделении одних неравенств от других и в определении углов, от которых они зависят. Поскольку рассматриваемое неравенство восстанавливается при каждом солнечном обращении, естественно поставить его в зависимость от движения Солнца и его кратных. Таким образом, выражая неравенство рядом синусов, зависящих от этого движения, находим, что оно очень точно сводится к двум членам, из которых первый пропорционален синусу среднего углового расстояния Солнца от той точки орбиты, где его скорость наибольшая, а второй, приблизительно в 95 раз меньший, пропорционален синусу того же удвоенного расстояния.
Измерения видимого диаметра Солнца доказывают нам, что его расстояние до Земли так же переменно, как и его угловая скорость. Этот диаметр увеличивается и уменьшается, следуя тому же закону, по которому изменяется его скорость, но в отношении, вдвое меньшем. В момент наибольшей скорости этот диаметр равен 6035.
сс7 в момент наименьшей скорости он составляет 5836.сс3 [1891."0], следовательно, средний диаметр равен 5936.сс0 [1923."3].Так как расстояние Солнца от Земли обратно пропорционально его видимому диаметру, увеличение этого расстояния следует тому же закону, что и уменьшение этого диаметра. Ту точку орбиты, в которой Солнце ближе всего к Земле, называют