Читаем Изобретения Дедала полностью

Вся прелесть этого проекта состоит в том, что покрытия звезд можно будет наблюдать в недорогие телескопы с не очень высокой разрешающей способностью. Нам не обязательно получать четкое изображение звезды — достаточно принять идущий от нее свет, используя для этого простой фотоумножитель. Поскольку большинство звезд излучают свет равномерно, резкое изменение сигнала от фотоумножителя будет означать, что произошло покрытие звезды зондом. Точное время и степень покрытия дадут более подробную информацию о координатах, размерах и радиальном распределении яркости исследуемой звезды, чем непосредственное наблюдение ее в телескоп. Устанавливая перед фотоумножителем различные фильтры, можно изучать и спектральные характеристики звезд. При диаметре зонда 1 км наблюдатели, находящиеся на Земле на расстоянии более 1 км друг от друга, будут наблюдать покрытие по-разному, так что большое число любителей, вооруженных дешевыми телескопами, быстро соберут огромное количество новой информации.

Вначале Дедал опасался, что придется просить американцев вести слежение за нашим зондом и сообщать нам его местоположение. Но теперь он придумал, как вести прямое визуальное наблюдение за зондом: нужно нанести на шар отражающее покрытие, и тогда отовсюду можно будет увидеть маленькое отражение Солнца точно в центре зонда. Чтобы не спутать зонд со звездами, поверх отражающего покрытия придется нанести слой коричневого лака: это позволит безошибочно отыскать зонд среди звезд, поскольку коричневых звезд не существует.

New Scientist, September 27, 1979

Из записной книжки Дедала

Нас интересуют звезды, видимые в недорогой телескоп как отдельные объекты, т. е. звезды, находящиеся на расстоянии примерно 3–30 тыс. св. лет. (1016–1020 м). Типичная звезда имеет диаметр 109 м, так что угловой размер звезд лежит в пределах 10-7– 10-11 рад. Следует постараться вывести зонд на сильно вытянутую околосолнечную орбиту, чтобы расстояние между зондом и Землей изменялось в пределах 0,1–10 радиусов орбиты Земли (1010–1012 м). Чтобы покрывать интересующие нас звезды, такой зонд должен, следовательно, иметь диаметр около 103 м; тогда его угловой диаметр составит 10-7–10-9 рад. Для разных звезд будут наблюдаться разные затмения: полные или частные.

Как следить за зондом? Вблизи центра алюминированного шара (напоминающего первые пассивные ретрансляторы серии «Эхо») будет наблюдаться небольшое изображение Солнца. Угловой диаметр Солнца для земного наблюдателя равен около 0,01 рад; угловой размер мнимого изображения Солнца на выпуклом зеркале будет меньше в r/2d раз, где r — раднус кривизны зеркала, d — расстояние между зеркалом и Солнцем. При наблюдении с расстояния, равного радиусу земной орбиты, угловой размер мнимого изображения Солнца составит а = 0,01 × r/2d = 0,01 × 103/(2×1011) = 5×1011 рад и будет сопоставим с угловыми размерами покрываемых звезд. Поэтому изображение Солнца удастся отчетливо наблюдать, что обеспечит возможность слежения за зондом, но в то же время оно не будет настолько ярким, чтобы «заглушать» свет исследуемой звезды.

Сбор информации. Направим на исследуемую звезду недорогой телескоп, в фокусе которого помещен фотоумножитель. Нас вполне устроит рефрактор или рефлектор с большой апертурой (создаваемые им аберрации в данном случае нас мало волнуют); вполне подойдет просто зеркало от большого прожектора (в своей знаменитой работе по изучению флуктуации яркости Сириуса Хэнбери-Браун и Твисс использовали именно такие зеркала с фотоумножителями). Не требуется, чтобы оптика давала хорошее изображение звезды и обеспечивала разрешение исследуемой звезды от соседних, непокрываемых, звезд. Соседние звезды создадут только дополнительную фоновую освещенность, увеличив сигнал фотоумножителя. Мы будем просто регистрировать выходной сигнал фотоумножителя и искать характерные провалы, соответствующие покрытию звезды зондом. Кстати, зонд можно несколько усовершенствовать. Если раскрасить зонд черными полосами и заставить его вращаться, то солнечный зайчик на поверхности зонда будет мерцать. Еще лучше приделать к зонду огромные крылья, как у ветряной мельницы. Тогда, во-первых, он захватит гораздо больший участок неба и число наблюдаемых покрытий увеличится, а во-вторых, при соответствующем устройстве лопастей покрытия звезд различного диаметра будут резко отличаться друг от друга. Наши астрономы-любители быстро соберут много новых данных об угловых размерах большого числа звезд.

Кстати говоря, неплохо было бы запустить такой же спутник на околоземную орбиту. Благодаря своему большому диаметру он обеспечит гораздо большее число покрытий, хотя и более кратковременных. Если же вывести его на полярную орбиту (т. е. орбиту, проходящую вдоль небесного меридиана), то он мог бы покрыть все небо.

<p>Огонь, вода и медные трубки</p>
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки