Читаем Изобретения Дедала полностью

Комментарий Дедала

Первоначально я планировал сконструировать нечто вроде плавучей теплицы. Мне представлялся покачивающийся на волнах застекленный купол — крышка гигантской столовой масленки, — удерживающий под собой большой объем воздуха. Лучистая энергия Солнца, проходящая под купол, накапливается там за счет «парникового эффекта» — в результате температура воздуха под куполом повышается. При температуре окружающей воды 10°С (давление водяных паров 1230 Н/м2) вода под куполом может нагреться до 40°С (давление водяных паров 7370 Н/м2); разность давлений будет достаточна, чтобы обеспечить плавучесть и движущую силу корабля-смерча. Поскольку в резервуаре-накопителе с зачерненным (для увеличения поглощения) дном вода может быть нагрета солнечными лучами почти до кипения, мои допущения представляются весьма скромными. Для еще большего поглощения солнечной энергии воду под куполом можно было бы подкрасить чем-нибудь вроде сепии (чернил каракатицы). Движение вперед осуществлялось бы за счет реактивной тяги, возникающей при снижении существующего под куполом избыточного давления с помощью отверстий, открывающихся с соответствующей стороны купола. Получается очень славный «солнечный кораблик», у которого полностью отсутствуют движущиеся части и весьма мала площадь смоченной поверхности. Однако подобная конструкция не лишена недостатков. Во-первых, необходимо постоянно следить за тем, чтобы количество выпускаемого из-под купола воздуха было сбалансировано со скоростью испарения воды — иначе купол заполнится водой и затонет. Во-вторых, даже очень широкий и приземистый купол окажется, по-видимому, неустойчивым, и чтобы избежать его опрокидывания, потребуется установка дополнительных поплавков по его периметру. В-третьих, эффективность такого способа передвижения очень невысока. На поверхность купола, представляющего собой в плане квадрат со стороной 100 м, падает до 104 кВт мощности солнечной энергии, однако при столь малой разности давлений кпд реактивного двигателя едва ли достигнет 1%. В результате его мощность не превысит 100 кВт и вряд ли будет достаточна для перемещения такого гиганта. Очевидно, реальный солнечный корабль должен использовать солнечную энергию с гораздо большей площади морской поверхности, чем покрывает его собственная поверхность.

Хороший пример в этом отношении дает нам парусный корабль. Он передвигается за счет ветра, возникающего вследствие конвекции воздушных масс над миллионами квадратных километров океанской поверхности [5]. А нельзя ли создать «собственный», локальный, ветер, который приводил бы корабль в движение? В своей чрезвычайно разумной статье Дж. Бернал (The Scientist Speculates, ed. I. J. Good, Heinemann, 1961, p. 17) указывает, насколько важным открытием было изобретение печной трубы, и отмечает, что влажный воздух быстро поднимается по трубе не столько потому, что он горячий, сколько в силу повышенного содержания влаги: молекулярная масса воды (Мводы=18) существенно меньше эффективной молекулярной массы воздуха (Mвозд=29). Таким образом, труба, всасывающая влажный воздух над поверхностью моря и направляющая его вверх, создает в окружающем пространстве локальный устойчивый поток воздушных масс, т. е. локальный ветер. Самый простой способ использовать энергию вертикальной тяги — установить внутри трубы турбину. Тут я вспомнил, как смерч ускоряет медленное кориолисово вращение воздушных масс вследствие того, что засасывает воздух с большой площади и подтягивает воздушную массу к оси вращения. В соответствии с законом сохранения момента количества движения по мере приближения к оси вращения угловая скорость воздушных частиц быстро растет. Дальнейший ход мыслей очевиден.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки