• первое, так как различие в процентах между силами согласия и противоречия в их широкой пропорции приемлемой гармонии (4 к 1) составляет 60 % (80 % – 20 %), и значит ширина площади этой пропорции равна 12 клеткам (60 %: 5 %), то площадь её равна 240 клеткам квадратным (12 кл. х 20 кл.);
• второе, так как различие в процентах между этими же силами в их широкой пропорции хорошей гармонии (3 к 1) составляет 50 % (75 % – 25 %), и значит ширина площади этой пропорции равна 10 клеткам (50 %: 5 %), то площадь её равна 200 кл. кв. (10 кл. х 20 кл.);
• третье, так как различие в процентах между этими же силами в их исходной пропорции наилучшей гармонии (2 к 1) составляет 33,1/3 % (66,2/3 % – 33,1/3 %), и значит ширина площади этой пропорции равна 6,2/3 клетки (33,1/3 %: 5 %), то площадь её равна 133,1/3 кл. кв. (6,2/3 кл. х 20 кл.);
• и четвёртое, так как различие в процентах между этими же силами в их узкой пропорции приемлемой гармонии (3 к 2) составляет 20 % (60 % – 40 %), и значит ширина площади этой пропорции равна 4 клеткам (20 %: 5 %), то площадь её равна 80 кл. кв. (4 кл. х 20 кл.).
Итак, сначала я построил схему исходной сложной, наиболее гармоничной пропорции (2 к 1) соблюдая все должные, указанные выше её характеристики:
• она является полностью подобной форме фрактала, так как определяется ею: она каплеобразна, её уровни соответствуют уровням фрактала и процентные доли величины её площади на всех её уровнях соответствуют (на моей схеме – почти) таким же процентным долям величины площади схемы фрактала на всех этих же его уровнях; поэтому я и объединяю эти две схемы в одну;
• и общая площадь схемы этой главной, исходной сложной пропорции (почти) точно соответствует площади такой же главной, исходной пропорции простой – 133,33 кл. кв. (на моей схеме – 134 кл. кв.).
Далее я попытался строить схемы других трёх сложных – производных гармонических пропорций (4 к 1, 3 к 1 и 3 к 2) симметрично по отношению к схеме этой главной сложной, принципиальной, наиболее гармонической пропорции, но быстро убедился в том, что этот способ их построения неверен. Почему неверен? —
Для того, чтобы построить такие симметричные схемы и выдержать их должную площадь, нужно изменить ширину схемы сложной исходной пропорции на коэффициент различия величины площади всех этих сложных схем. Ведь при одинаковой длине, или высоте всех этих схем, построенных в одинаковых координатных прямоугольниках, коэффициент различия величины их площади обязательно является также и коэффициентом различия каждой линии их ширины.
Какими же являются эти коэффициенты? —
• для пропорции 4 к 1 – 240 кл. кв. разделить на 133,33 кл. кв. = 1,8;
• для пропорции 3 к 1 – 200 кл. кв. разделить на 133,33 кл. кв. = 1,5;
• и для пропорции 3 к 2 – 80 кл. кв. разделить на 133,33 кл. кв. = 0,6.
Далее, линии ширины сложной исходной пропорции, которые нужно изменять в соответствии с этими найденными коэффициентами, находятся между каждыми двумя из бесчисленных точек, расположенных симметрично на верхней (согласие) и на нижней (противоречие) линиях её схемы. Но для построения от неё схем трёх других сложных пропорций достаточно изменять величину не всех её бесчисленных линий ширины, а только тех нескольких из них, которые находятся между каждыми двумя симметрично расположенными точками излома верхней и нижней линий её схемы. Таких точек излома на каждой верхней и нижней линии этой схемы, а значит и главных, определяющих линий её ширины, я сделал 8.
И вот здесь я сразу же увидел, что если самую широкую пропорцию (4 к 1) строить симметрично пропорции исходной, то она не поместится в их общий координатный квадрат, – ведь если самую большую линию ширины исходной пропорции, которая является границей между её низким и средним уровнями и которая равна 13 клеткам, умножить на коэффициент 1,8, то самая большая линия ширины этой самой широкой пропорции получится равной 23,4 клетки. То есть эта линия ширины этой пропорции выйдет за пределы их общего координатного квадрата, ширина которого равна только 20 клеткам. И это, конечно, означает, что строить все три схемы производных сложных гармонических пропорций симметрично схеме пропорции исходной нельзя. Технически можно, правда, схему сложной гармонической пропорции 3 к 1 поместить в этот координационный квадрат (13 кл. х 1,5 = 19,5 кл.), и тем более можно поместить в него и схему узкой сложной гармонической пропорции (3 к 2), но я думаю, что если точное симметричное построение самой широкой гармонической пропорции (4 к 1) является принципиально невозможным и поэтому неверным, то такое же точное симметричное построение и двух других сложных гармонических пропорций также является принципиально неверным.
Поэтому схемы трёх сложных производных гармонических пропорций я строил стараясь возможно более выдерживать лишь их каплеобразность и должную величину их площади. И поэтому их схемы получились у меня лишь более или менее подобными схеме пропорции исходной, но не строго симметричными с ней, как, по-моему, и должно быть.
Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова
Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT