Читаем Каббалистическая астрология. Часть 1: Тонкие тела полностью

Математика. В основе современной математики лежит теоретико-множественная концепция Георга Кантора, которая кардинально противоречит голографическим представлениям.

Под множеством в математике понимается набор (совокупность) определенных объектов, называемых его элементами, относительно которых предполагается, что они однозначно идентифицированы (то есть четко различаются друг от друга) и как-либо отграничены от всего остального мыслимого мира, то есть имеется некоторое правило, позволяющее определенно сказать, является любой объект элементом данного множества или нет.

Это определение предполагает нечто вроде тюремного порядка: имеется тюрьма (множество) и набор заключенных (элементы), рассаженных по одиночным камерам (идентификация). Голографический подход требует, чтобы сама тюрьма была символически представлена у каждого из узников: например, у него должен быть ее план, на котором на всех камерах указаны имена узников, и кроме того, звездочкой отмечена его собственная камера. Тогда множество А, состоящее из элементов а, б, в, что на языке теории множеств обозначается так: А={а, б, в}, выглядело бы гораздо богаче: А={ а/ {а*, б, в}, б/{а, б*, в}, в/{а, б, в*} } — (косая черта символизирует план множества, имеющийся у элемента).

Далее в теории вводятся понятия объединения и пересечения множеств — объединением двух множеств называется множество, состоящее из элементов, принадлежащих хотя бы одному из этих множеств, а пересечением — множество состоящее из элементов, принадлежащих обоим этим множествам — и молчаливо предполагается, что эти операции всегда корректны, то есть любые два множества можно "объединить" и "пересечь". Интересно, как отреагирует директор школы на предложение учителя объединить второй и десятый классы и провести у них общий урок по родной речи и химии? Очевидно, должны быть какие-то основания для проведения этих операций, вытекающие из существа дела. Свойства объединения не могут целиком вытекать из свойств объединяемых множеств, но всегда должны содержать нечто новое, отражая понятия синтеза и медитации; пересечение же должно помнить о породивших его множествах, то есть множество {а, б} {а, в} по Кантору состоящее из одного элемента {а}, должно, тем не менее, сохранять память о своих "родителях" {а, б} и {а, в}, и при ближайшем рассмотрении выглядеть, скажем, так: {а/ {а, б} {а, в} } (здесь косая черта символизирует предысторию).

Итак, можно выделить следующие основные принципы, которым должны подчиняться ментальные концепции и теории:

а) Принцип санкционированности: на любое действие следует иметь специальное разрешение;

б) Принцип памяти: каждое действие сохраняет в своем результате память о всех операциях (то есть членах операции);

в) Принцип люфта: результат действия никогда не определен однозначно, и может несколько меняться в зависимости от обстоятельств; этот же принцип в несколько иной формулировке звучит так:

г) Принцип побочного эффекта: всякое действие всегда имеет неожиданные следствия, которые могут оказаться незамеченными, но именно они представляют максимальный интерес для исследователя;

д) Принцип последовательной развертки: в части всегда содержится информация о целом, но извлечь ее можно лишь в несколько этапов, потратив на каждом из них определенное количество ментальной энергии.

Если концепция не обладает указанными пятью свойствами, ее объектами трудно моделировать каузальные потоки; с этим, в частности, связан кризис теоретической физики нашего века, которая никак не решится расстаться с детерминизмом в широком понимании этого слова, в частности, в своем фундаменте, то есть в математике и логике.

* * *

Арифметика натуральных чисел (1, 2, 3. и т. д.) как будто не обладает качествами б) — д); например, 1+1=2 и никакого "люфта" (скажем, иногда 2.01, а иногда 1.97) здесь нет, поскольку числа целые. Однако здесь мы сталкиваемся с качественно иной ситуацией: ментальным моделированием не каузального, а буддхиального и атманического планов, когда люфты и побочные эффекты возникают на фазах перехода с плана на план.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже