Когда дверь открылась, сразу стало ясно, что мы не ошиблись – по позам и выражениям лиц людей, сидевших вокруг овального стола. Здесь не было комфортно расслабленных фигур, улыбок, шутливой, оживлённой дискуссии – типичных признаков инновационного мозгового штурма. В «нашей» комнате мы увидели руки, скрещённые на груди, «закрытые» лица. Никто не разговаривал. Присутствующие, явным образом, больше были озабочены не сказать лишнего, чем свободным обменом мнениями.
По таким примерам мы видим, что в обществе существуют объективные препятствия свободному обмену информацией об авариях и других вредных явлениях. Эти препятствия затрудняют доступ к нужной информации именно тем, кому она особенно важна.
Необходимо подчеркнуть ещё один аспект ситуации. Традиционные методы анализа вреда предполагают получить прямой ответ на вопрос «Как произошло вредное событие?» Учитывая многофакторное психологическое противодействие таким вопросам, разумно предполагать, что нужного ответа вы, скорее всего, не получите.
В результате,
Может быть, с прогнозом вредных явлений дела обстоят лучше? На первый взгляд, – да! Помимо простого гадания, в мире существует внушительный перечень прогнозных методов, принятых в различных отраслях промышленности, в частности:
• Оценка рисков – Risk Assessment;
• Анализ видов и последствий отказов – Failure Modes and Effects Analysis (FMEA);
• Выявление рисков неработоспособности – Hazard and Operability study (HAZOP);
• Ранний анализ недостатков конструкций – Preliminary Hazard Analysis (PHA);
• Анализ уязвимости – Vulnerability Analysis;
• Метод построения деревьев ошибок – Fault Trees;
• Метод построения деревьев событий – Event Trees;
и других.
На базе опыта, накопленного в соответствующей предметной области, эти методы способны помочь в предсказании некоторых сбоев, отказов, ошибок, недостатков, нежелательного изменения параметров.
Однако,
Ни один из них не располагает инструментами для предсказания системного эффекта взаимодействия негативных воздействий, спонтанных количественно-качественных преобразований, лавинообразных процессов. А ведь все это – типичные сценарии развития аварий и катастроф.
В случае FMEA/HAZOP прогноз обычно проводится на базе таблиц, включающих в себя практически один, но многократно повторяемый вопрос:
Монотонные вопросы такого рода способны убить всякое воображение, необходимое для создания прогнозного сценария. А чтобы компенсировать явную слабость такого подхода, исследователю предлагается длинный список «всех параметров всех деталей и частей системы», которые необходимо проанализировать.
Увы, природа наша такова, что длинный список однотипных вопросов убивает творческую мысль и еще более затрудняет анализ ситуации.
Поэтому:
Учитывая вышесказанное, практику – производственнику и специалисту по рискам необходим метод, который:
• Обеспечит доступ к информации о реальных причинах вредных явлений;
• Позволит предсказывать, в разумных временных рамках, потенциально вредные явления, которые:
не очевидны;
развиваются скрыто.
Давайте посмотрим, как был создан Инверсионный Метод и почему он способен обеспечить все указанные выше требования.
Истоки метода
Создатель ТРИЗ, Генрих Альтшуллер, первым осознал, что созданная им теория может предложить более эффективные подходы не только к изобретательству, но и к проблемам научного исследования. [1]. Он отмечал существенные общие черты между процессом создания новых технологий и исследованием окружающего мира: оба типа интеллектуальной деятельности оперируют понятиями новизны и требуют активного творческого мышления. В 1960 году Альтшуллер опубликовал работу «Как делаются открытия. Классификация открытий и методов их получения».