Эти наборы данных полезны, поскольку показывают эмпирическую сторону, которую мы можем использовать для проверки теорий, объясняющих состав промышленного комплекса того или иного региона. Для этого нам необходимо выявить неочевидные особенности этих наборов данных (то есть те, которые нельзя объяснить случайным образом), являющиеся общими для нескольких различных наборов данных и поддающихся предсказанию, исходя из тестируемых теорий.
Поразительной особенностью, являющейся общей для данных, отражающих налоговое резидентство фирм, и данных международной торговли, является паттерн, который экологи называют
Чтобы проиллюстрировать идею вложенности, рассмотрим данные экспорта Аргентины, Гондураса и Нидерландов. Из 50 продуктов, которые Гондурас экспортировал в 2008 году, Аргентина экспортировала 25 (50 %), а Нидерланды – 48 (96 %).[136]
Из 227 продуктов, которые экспортировала в 2008 году Аргентина, Нидерланды экспортировали 213 (94 %). Это говорит нам о том, что экспорт Гондураса, говоря статистически, является подмножеством экспорта Аргентины, а экспорт Аргентины и Гондураса, в свою очередь, представляют собой подмножество экспорта Нидерландов. Вы можете посчитать очевидным то, что многоотраслевой район включает отрасли, присутствующие в наименее разнообразных в плане представленных отраслей регионах. Тем не менее значение вложенности, наблюдаемой в данных, статистически больше того, которое можно было бы ожидать, исходя из различий в населении или промышленности, таким образом, мы называем эти матрицы вложенными не только из-за структуры подмножеств, но и потому, что значение вложенности статистически больше того, которое можно было бы ожидать, исходя из очевидных объяснений.[137]Статистическая значимость вложенности представляет собой факт распределения отраслей в пространстве, заставляющий нас глубоко задуматься о механизмах, которые могли бы помочь учесть вложенность. Здесь опять становится полезной концепция челобайта.
Вложенность этих матриц, отражающих расположение отраслей, говорит нам о том, что некоторые отрасли промышленности (и, следовательно, фрагменты знаний и ноу-хау) присутствуют практически везде, в то время как другие доступны только в некоторых местах. Однако какие же отрасли присутствуют всюду? Те, которые воплощают большие или небольшие объемы знаний и ноу-хау? Чтобы ответить на вопрос, рассмотрим несколько примеров.