Подсказка
Задача может показаться неприступной из-за того, что в условии практически ничего не задано. Нет ни размеров колечка, ни начальных скоростей скольжения и вращения, ни коэффициента трения. На самом деле, когда задача формулируется таким образом, это обычно служит намеком на то, что ответ не будет зависеть от конкретных параметров. Поэтому при решении вы сами можете взять какие-то значения для этих величин, но должны проследить, что они действительно исчезнут из ответа.
Кольцо участвует сразу в двух движениях: скользит и вращается. Из-за векторного сложения поступательного и вращательного движения разные части кольца движутся относительно поверхности в разные стороны (нарисуйте колечко, представьте, как оно движется, и убедитесь, что разные участки действительно в данный момент скользят по поверхности в разных направлениях). Поэтому выберите вначале какой-то маленький участок на кольце и сосчитайте силу трения, действующую именно на это место. Подумайте, как влияет эта сила на вращательное и поступательное движение, и попытайтесь усреднить эти два влияния по всему кольцу.
После этого проанализируйте формулы для трех случаев: когда скорости вращения и движения совпадают, а также когда скорость вращения очень мала или, наоборот, очень велика по сравнению с поступательным движением. Это наведет вас на мысль, как ответить на вопрос задачи.
Рассмотрим участок кольца, который находится под углом к направлению движения (рис. 2). Пусть в данный момент времени скорость центра масс кольца равна
Рис. 2. Скорости и силы на маленьком участке кольца
Эти выражения выглядят громоздкими, но они получаются из обычных формул сложения двух векторов скоростей.
Сила трения, действующая на этот участок, по модулю равна
У этой силы есть также проекция вбок, то есть перпендикулярно поступательному движению, но при усреднении по всему кольцу эта проекция обнулится. В этом можно убедиться математически, если рассмотреть второй участок, находящийся под углом
Для того чтобы посчитать эффект для всего кольца в целом, надо сложить эти силы по всему кольцу, то есть учесть элементы кольца, расположенные под всеми углами . Это даст нам два ускорения, притормаживающих поступательное движение и вращение:
Угловые скобки обозначают усреднение по всем углам ; это последствие того, что мы общую силу поделили на общую массу. При желании его можно выразить через интегралы, но это не обязательно.