Читаем Как мы учимся. Почему мозг учится лучше, чем любая машина… пока полностью

Стараясь минимизировать ошибки, алгоритм градиентного спуска обнаружил, что эти формы лучше всего подходят для классификации образов. Однако, если бы та же самая сеть получала на входе отрывки из книг или нотные листы, она бы настроилась иначе и научилась распознавать буквы, ноты или любые другие фигуры, распространенные в новой среде. Например, на цветной иллюстрации 3 показано, как сеть такого типа самоорганизуется для распознавания тысяч рукописных цифр8. На самом низком уровне данные смешаны: одни изображения внешне похожи, но представляют собой разные цифры (скажем, 3 и 8); другие, наоборот, выглядят по-разному, но в действительности обозначают одно и то же (цифру 8, например, каждый пишет по-своему – у кого-то верхний контур замкнут, у кого-то не замкнут и т.д.). На каждом этапе степень абстракции возрастает, пока все варианты одного и того же знака не будут сгруппированы вместе. Посредством процедуры сокращения ошибок искусственная сеть обнаруживает иерархию признаков, наиболее важных для распознавания рукописных цифр. Примечательно, что само по себе исправление ошибок позволяет обнаружить целый ряд подсказок, облегчающих решение поставленной задачи.

Концепция обучения путем обратного распространения ошибки лежит в основе многих современных компьютерных приложений. Это рабочая лошадка, благодаря которой смартфон умеет распознавать ваш голос, а умный автомобиль – «видеть» пешеходов и дорожные знаки. Весьма вероятно, что наш мозг тоже использует ту или иную ее версию. Впрочем, метод обратного распространения ошибки может принимать разные формы. За последние тридцать лет в области искусственного интеллекта достигнут невероятный прогресс; исследователи обнаружили множество приемов, облегчающих обучение. Ниже мы рассмотрим их более подробно – оказывается, они многое могут рассказать о нас самих и о том, как мы учимся.

Научение – это исследование пространства возможностей

Одна из проблем, связанных с описанной выше процедурой коррекции ошибок, заключается в том, что система может зациклиться на неоптимальных параметрах. Представьте мяч для гольфа, который всегда катится под уклон. Допустим, прямо сейчас он движется по склону холма. Если в какой-то момент он попадет в ямку или в углубление, то уже никогда не достигнет его подножия – низшей точки ландшафта, абсолютного оптимума. Нечто подобное может случиться и с алгоритмом градиентного спуска, который иногда застревает в точке «локального минимума». «Локальный минимум» – своеобразный колодец в пространстве параметров, ловушка, из которой нельзя выбраться. Как только это происходит, обучение останавливается, ибо все последующие изменения кажутся контрпродуктивными: любое из них лишь увеличивает частоту ошибок. Система чувствует, что научилась всему, чему могла, и слепо игнорирует настройки высшего уровня, хотя те могут находиться всего в нескольких шагах в пространстве параметров. Алгоритм градиентного спуска не «видит» их, ибо отказывается подняться наверх, чтобы опуститься еще ниже. Близорукий, он отваживается отойти только на небольшое расстояние от начальной точки, а потому может не заметить лучшие, но удаленные конфигурации.

Это кажется вам слишком абстрактным? Представим конкретную ситуацию: вы идете за покупками на рынок, где хотите купить продукты подешевле. Вы минуете первого продавца (цены у него явно завышены), обходите второго (у него слишком дорого) и, наконец, останавливаетесь около третьего. У третьего продавца товар гораздо дешевле, чем у двух предыдущих. Но кто поручится, что в конце прохода или, возможно, в соседнем городе цены не окажутся еще ниже? Иначе говоря, понятия «лучшая местная цена» и «глобальный минимум» не всегда означают одно и то же.

На такой случай у специалистов в области вычислительной техники припасен целый арсенал хитроумных приемов. Большинство состоит в том, чтобы ввести в поиск лучших параметров элемент случайности. Идея проста: вместо того чтобы двигаться на рынке по одному-единственному проходу, разумнее выбрать более хаотичный маршрут; вместо того чтобы позволить мячу для гольфа спокойно катиться вниз по склону, следует придать ему ускорение, тем самым уменьшив вероятность того, что он застрянет в ямке. Иногда алгоритмы стохастического поиска пробуют удаленные и частично случайные настройки: если лучшее решение находится в пределах досягаемости, шансы рано или поздно найти его достаточно велики. На практике ввести некоторую степень случайности можно самыми разными способами: задавая или обновляя параметры хаотичным образом, внося разнообразие в порядок примеров, добавляя шум к данным или используя только случайный набор связей. Все это повышает надежность обучения.

Перейти на страницу:

Похожие книги

Что-то на айтишном. Продуктовый подход к развитию личности
Что-то на айтишном. Продуктовый подход к развитию личности

Альтернативный учебник в жанре сторителлинга о метанавыках в условиях стремительно меняющегося мира. Автор получает второй шанс на осмысленное формирование своей личности и делится историей своего становления на основе современных исследований о мозге и поведении, продуктового подхода, используемого в IT и собственного опыта работы в коммуникациях всех уровней. Книга посвящена поколениям зумеров, поздних миллениалов и внутренним детям людей любого возраста. Перед вами – практическое руководство по всестороннему развитию и практикам self help.Комментарий Редакции: Есть книги, которые дают инструменты работы над собой, есть те, в которых авторы, изменившие свою жизнь, вдохновляют примером успеха. Эта книга – чудо алхимии, умелый сплав драгоценных металлов мотивационной литературы.

Ирина Баринская

Карьера, кадры / Личная эффективность / Образование и наука
Как брать интервью. Искусство задавать правильные вопросы и получать содержательные ответы
Как брать интервью. Искусство задавать правильные вопросы и получать содержательные ответы

Интервью берут все. Врачи, юристы, учителя, рекрутеры, соцработники, писатели… Каждый из нас оказывается в ситуациях, когда нужно поговорить с незнакомцем, провести встречу, пройти собеседование, получить какую-то важную информацию. Конечно, можно положиться на удачу, но, если потратить немного времени на подготовку, результат будет куда более впечатляющим.Дин Нельсон – американский журналист с сорокалетним опытом, публиковавшийся в The New York Times, The Boston Globe и USA Today, провел интервью с множеством известных людей, в частности с писателями Рэем Брэдбери, Джойс Кэрол Оутс, Карлосом Руисом Сафоном, поэтом Билли Коллинзом, бывшим президентом Мексики Висенте Фоксом Кесадой, актером, режиссером и сценаристом Томасом Маккарти и баскетболистом Каримом Абдул-Джаббаром.В этой книге он делится профессиональными секретами: как правильно выбрать место встречи, задавать «неудобные» вопросы, как говорить с кумиром или с тем, кто вызывает неприязнь, находить правильные формулировки и выстраивать успешную схему беседы.«Умение задавать хорошие вопросы в правильном порядке, которое приводит к более глубинному пониманию вещей, не повредит любой работе и пригодится в жизни буквально каждому. Я лично имел возможность наблюдать, как это происходит с самыми разными людьми и практически в любой профессиональной среде» (Дин Нельсон).

Дин Нельсон

Личная эффективность / Образование и наука