Наш мозг тоже содержит множество допущений, причем самого разного толка. В одной из последующих глав мы убедимся, что при рождении мозг ребенка уже организован и весьма неплохо информирован. Дети имплицитно знают, что мир состоит из вещей, которые движутся, если их толкнуть, но никогда не проникают друг в друга (твердые предметы), а также из гораздо более странных сущностей, которые говорят и движутся сами по себе (люди). Специально изучать эти законы нет никакой необходимости: поскольку они верны везде, где живет человек, наш геном заранее встраивает их в мозг, тем самым существенно ускоряя процесс научения. Младенцам вовсе не приходится познавать мир «с нуля»: поскольку их мозг с самого начала изобилует врожденными ограничителями, все, что остается, – это усвоить определенные параметры, которые меняются непредсказуемо (форма лица, цвет глаз, тон голоса, индивидуальные вкусы окружающих людей и так далее).
С другой стороны, если мозг ребенка знает разницу между людьми и неодушевленными объектами, то это потому, что в определенном смысле он ей научился – не в первые дни своей жизни, но в ходе миллионов лет эволюции. Дарвиновский естественный отбор, по сути, представляет собой типичный алгоритм обучения – невероятно мощную программу, которая работала сотни миллионов лет на миллиардах обучающихся машин (под «машинами» я подразумеваю всех существ, когда-либо живших на Земле)14
. Мы – наследники невероятной, бесконечной мудрости. Путем дарвиновских проб и ошибок наш геном впитал знания всех предшествующих поколений. Эти врожденные знания совсем иного типа, нежели конкретные факты, которые мы узнаем в течение жизни: они носят гораздо более абстрактный характер, ибо «программируют» наши нейронные сети уважать фундаментальные законы природы.Вкратце, во время беременности наши гены закладывают архитектуру мозга, которая направляет и ускоряет последующее научение, ограничивая размер исследуемого пространства. На языке информатики можно сказать, что гены задают «гиперпараметры» мозга – высокоуровневые переменные, определяющие количество слоев, типы нейронов, общую форму их взаимосвязей, дублирование в сетчатке и так далее. Поскольку многие из этих переменных хранятся в нашем геноме, учиться им не нужно: наш вид усвоил их в ходе эволюционного развития.
Вывод: наш мозг – не просто пассивный приемник сенсорных импульсов. С самого начала он обладает набором абстрактных гипотез – знаниями, накопленными в результате дарвиновской эволюции и проецируемыми на внешний мир. Хотя не все ученые согласны с данной точкой зрения, я считаю ее ключевой: наивная эмпирическая философия, лежащая в основе многих современных искусственных нейросетей, ошибочна. Едва ли при рождении наши нейронные сети абсолютно дезорганизованы и лишены каких-либо знаний вообще. Такого просто не может быть. Научение – и у человека, и у машины – всегда начинается с некоего набора априорных гипотез. Эти гипотезы система проецирует на поступающие данные, а затем выбирает те, которые лучше всего согласуются с текущими условиями. Как пишет Жан-Пьер Шанжё в своей книге
Глава 2
Почему наш мозг учится лучше, чем существующие машины
Глядя на последние достижения в сфере искусственного интеллекта,
можно подумать, будто мы наконец-то сообразили, как скопировать и даже превзойти человеческое научение и интеллект. Согласно некоторым самопровозглашенным пророкам, машины вот-вот поработят нас. Ничто не может быть дальше от истины. На самом деле, большинство когнитивистов, несмотря на значительный прогресс в области искусственных нейронных сетей, прекрасно понимают, что возможности этих машин крайне ограниченны. По правде говоря, почти все искусственные нейронные сети осуществляют только те операции, которые наш мозг выполняет бессознательно, за несколько десятых долей секунды, – прежде всего это восприятие образа, его распознавание, классификация и установление значения15. Однако в отличие от машин наш мозг умеет не только это, он способен изучать образ сознательно, тщательно, шаг за шагом, в течение нескольких секунд. Он формулирует символические представления (репрезентации) и эксплицитные теории мира, которыми мы можем поделиться с окружающими с помощью речи.Операции такого рода – медленные, разумные, символические – остаются исключительной привилегией нашего вида (пока). Современные алгоритмы машинного обучения их практически не воспроизводят. Несмотря на активные исследования в области машинного перевода и логики, искусственные нейронные сети часто обвиняют в том, что они пытаются изучить все на одном уровне, словно решение всех задач сводится к автоматической классификации. Для человека с молотком все похоже на гвоздь! Но наш мозг гораздо гибче. Получив информацию, он быстро расставляет приоритеты и по возможности выводит общие, логические, эксплицитные принципы.