Дальнейшие исследования подтверждают: в своих маленьких головках младенцы прогоняют детальную мысленную симуляцию ситуации и связанных с ней вероятностей. Если шары разделены некой перегородкой, перемещаются ближе или дальше от отверстия или выкатываются из ящика с разными интервалами, младенцы интегрируют все эти параметры в свои ментальные вычисления. Длительность их взгляда всегда отражает маловероятность наблюдаемого сценария, которую они, судя по всему, вычисляют исходя из количества задействованных предметов.
Все эти навыки превосходят возможности большинства современных искусственных нейросетей. И действительно, реакция удивления далеко не тривиальна. Удивление свидетельствует о том, что мозг сумел оценить шансы на тот или иной исход и пришел к выводу, что наблюдаемое событие крайне маловероятно. Поскольку во взгляде младенцев видны все признаки удивления, их мозг явно способен к вероятностным вычислениям. Кстати, одна из самых популярных современных теорий функционирования мозга рассматривает этот орган как вероятностный компьютер, который манипулирует распределениями вероятностей и использует их для предсказания будущих событий. Эксперименты показывают, что таким «продвинутым» калькулятором вооружены даже младенцы.
В ходе целой серии исследований было установлено: помимо калькулятора, мозг младенца снабжен всеми механизмами, позволяющими делать сложные вероятностные выводы. Помните математическую теорию вероятностей преподобного Байеса, благодаря которой можно проследить наблюдаемое явление до его вероятных причин? Похоже, дети способны применять правило Байеса уже через несколько месяцев после рождения49
. Они не только знают, как перейти от ящика с цветными шарами к соответствующим вероятностям (прямая цепочка умозаключений), как мы только что убедились, но и умеют переходить от наблюдений обратно к содержимому ящика (обратная цепочка умозаключений). В одном эксперименте малышам показывают непрозрачный ящик, после чего человек с завязанными глазами вынимает из него несколько шаров. Шары появляются один за другим; большинство из них красного цвета. Могут ли младенцы сообразить, что в ящике лежит множество красных шаров? Да! В конце исследователи открывают ящик. Если оказывается, что большинство шаров зеленые, дети удивляются и смотрят в ящик дольше, чем в ящик, полный красных шаров. Их логика безупречна: если в ящике лежат в основном зеленые шары, как объяснить тот факт, что экспериментатор достал так много красных?Хотя вам может показаться, что в этом поведении нет ничего особенного, оно подразумевает необычайную способность к имплицитным, бессознательным рассуждениям, работающим в обоих направлениях: на основании случайной выборки младенцы могут угадать характеристики множества, а на основании множества – характеристики случайной выборки.
Таким образом, с самого рождения наш мозг уже наделен интуитивной логикой. В настоящее время существует множество вариантов базовых экспериментов, описанных выше. Все они свидетельствуют об одном: дети ведут себя, как настоящие ученые, и рассуждают, как хорошие специалисты по статистике, исключая наименее вероятные гипотезы и выискивая скрытые причины различных явлений50
. В частности, американский психолог Фэй Сюй показала, что, если одиннадцатимесячные дети видят, как исследователь достает из контейнера преимущественно красные шары, а затем обнаруживают, что большинство шаров в ящике желтые, они не только удивляются, но и делают дополнительный вывод: этот человек предпочитает красные шары!51 Если же дети видят, что выборка не случайна, то есть следует определенному шаблону (скажем, желтый шар, красный шар, желтый шар, красный шар), они приходят к заключению, что ее произвел человек, а не машина52.Логика и вероятность тесно связаны. Как говорил Шерлок Холмс, «мой старый принцип расследования состоит в том, чтобы исключить все явно невозможные предположения. Тогда то, что остается, является истиной, какой бы неправдоподобной она ни казалась»[16]
. Другими словами, мы можем превратить вероятность в уверенность, используя рассуждение для исключения некоторых возможностей. Если ребенок способен «жонглировать» вероятностями, значит, он владеет и логикой, ибо логическое мышление – всего лишь ограничение вероятностного рассуждения вероятностями 0 и 153. Недавно философ и психолог Люка Бонатти доказал это экспериментально. В его исследованиях десятимесячный ребенок видит, как за ширмой прячут два объекта: цветок и динозавра. Затем один из этих объектов достают, но какой именно – неизвестно: он лежит в горшке, так что видна только верхняя часть. После этого с другой стороны ширмы появляется динозавр. В этот момент ребенок может сделать логический вывод: «В горшке либо цветок, либо динозавр. Но это не может быть динозавр, потому что я только что видел, как он появился с другой стороны. Значит, в горшке цветок». И это работает: ребенок не удивляется, если исследователь достает из горшка цветок, но бурно реагирует, если там оказывается динозавр.