Другие эксперименты на животных позволили ученым имитировать воздействие школьного обучения на мозг. Что происходит, когда обезьяна осваивает буквы, цифры или новый инструмент?114
Японский исследователь Ацуси Ирики показал: обезьяна может научиться пользоваться граблями и с их помощью доставать пищу, до которой нельзя дотянуться рукой. После нескольких тысяч попыток животное ни в чем не уступало опытному крупье в казино: ему требовалось всего несколько десятых долей секунды, чтобы сгрести угощение одним движением запястья. Обезьяна даже сообразила, как с помощью грабель среднего размера притянуть к себе вторые, более длинные грабли и добраться до пищи, расположенной гораздо дальше от клетки! Данный тип научения – овладение инструментом – вызвал целый каскад изменений в мозге. Прежде всего увеличилось потребление энергии в передней теменной области – зоне, которую люди используют, чтобы контролировать движения рук, писать, хватать предметы, пользоваться молотком или плоскогубцами. Это сопровождалось экспрессией новых генов, усилением синаптических связей и активным ветвлением дендритных и аксонных деревьев. Все это привело к 23-процентному утолщению коры. Кардинальным изменениям подверглись целые пучки связей: аксоны нейронов, расположенных на достаточном удалении, на стыке с височной корой выросли на несколько миллиметров и захватили часть передней теменной области, которая ранее не имела контактов с этими клетками.Изменения, перечисленные выше, – отличная иллюстрация проявлений нейропластичности во времени и пространстве. Повторим основные моменты. Итак, в нашем мозге активируется группа нейронов, кодирующих событие или понятие, которое мы хотим запомнить. Как же сохраняется эта информация? У нас есть синапс, микроскопическая точка контакта между двумя нейронами. Его сила увеличивается, когда два нейрона возбуждаются в короткой последовательности друг за другом – это знаменитое правило Хебба: нейроны, которые срабатывают вместе, связываются друг с другом. Синапс, ставший сильнее, подобен фабрике, которая увеличивает свою производительность: он набирает больше нейротрансмиттеров на пресинаптической стороне и больше рецепторных молекул на постсинаптической стороне. Разумеется, чтобы вместить их все, он увеличивается в размерах.
По мере того как нейрон учится, меняется и его форма. В том месте дендрита, где располагается синапс, образуется грибовидная структура под названием «дендритный шипик». При необходимости появляется второй синапс, дублирующий первый. Другие синапсы, которые образует тот же нейрон, тоже усиливаются115
.Таким образом, при пролонгированном научении меняется сама анатомия мозга. Благодаря последним достижениям в микроскопии – в частности, двухфотонным микроскопам, основанным на лазерах и квантовой физике, – можно непосредственно увидеть, как, подобно деревьям весной, растут синаптические и аксонные терминали. В совокупности дендритные и аксональные изменения могут быть весьма существенными – порядка нескольких миллиметров. В этом случае их можно обнаружить с помощью МРТ. Овладение навыками игры на музыкальном инструменте116
, чтения117, жонглирования118, даже вождения такси в большом городе119 приводит к заметному утолщению коры и усилению связей, соединяющих ее различные области: «пропускная способность» магистралей мозга тем выше, чем чаще мы ими пользуемся.Синапсы – это лучший пример научения, но отнюдь не единственный механизм изменений в мозге. Когда мы учимся, формирование новых синапсов заставляет нейроны отращивать дополнительные ветви как на аксонах, так и на дендритах. На приличном удалении от синапса аксоны окружают себя специальной оболочкой – миелином. Миелин похож на клейкую ленту, которая используется для изоляции электрических проводов. Чем больше используется аксон, тем больше слоев содержит эта оболочка и тем выше изоляция, что позволяет передавать информацию с большей скоростью.
Помимо нейронов, в игре под названием «научение» участвуют и другие клетки. В процессе научения трансформируется вся окружающая среда, включая глиальные клетки, которые питают и лечат нейроны. Меняется даже сеть вен и артерий, снабжающих их кислородом, глюкозой и питательными веществами. В конце концов модификациям подвергаются не только сами связи, но и поддерживающая их инфраструктура.