В мозге по-прежнему еще множество тайн, но мы уже смогли прийти к важному выводу: бо́льшая часть мозга работает не как система фиксированных двухточечных соединений наподобие телефонной сети, а как паутина бесчисленных нейронных связей, то есть как нейронная сеть. В наши дни нейронные сети обычно ассоциируются с компьютерами, но их идея впервые была выдвинута более полувека назад прозорливым канадским нейробиологом Дональдом Хеббом. Несколько лет спустя эту теорию подхватили специалисты в области теории вычислительных систем. В последующие десятилетия нейронные сети то входили в моду, то теряли популярность, но более совершенные компьютеры в конечном итоге привели к рождению новой области искусственного интеллекта (ИИ), известной как машинное обучение. Разработчики ИИ показали, что компьютерные нейронные сети могут научиться впечатляющим вещам, и тем самым побудили нейробиологов вновь посмотреть на головной мозг сквозь призму нейронных сетей. Сегодня у нас есть замечательный альянс нейробиологии и компьютерных наук, в котором каждая дисциплина служит источником идей для другой.
Действительно ли мозг использует нейронные сети для восприятия и осмысления мира? Функционирует ли он согласно принципам, применяющимся в «машинном обучении»? Ответ, судя по всему, да – и мозг делает это намного лучше компьютеров. Безусловно, компьютеры поражают нас некоторыми своими способностями – не только игрой в шахматы, но и выполнением других более сложных задач. Но по большому счету они как цирковые пони, умеющие делать только один трюк. И даже самые простые системы ИИ требуют большого количества оборудования и, как следствие, большого количества энергии. В отличие от них, наш скромный по размерам мозг способен выполнять огромное разнообразие задач, потребляя при этом меньше энергии, чем ночник для чтения. С этой точки зрения компьютеры очень примитивны, поэтому цель – сделать их хотя бы немного похожими на человеческий мозг.
Как это давно понял Дональд Хебб, нейронная сеть с фиксированными соединениями неспособна учиться. Ключ к обучаемости нейронной сети (биологической или искусственной) – в способности синаптических связей между ее нейронами меняться под влиянием опыта. Такая пластичность – общее правило для всего мозга, а не только для сенсорных систем. Благодаря ей мозг может оправляться от повреждений и выделять дополнительные ресурсы под особенно важные задачи. В зрительной системе нейронные сети могут научиться заранее идентифицировать визуальный объект, дополняя сенсорную информацию, поступающую с сетчатки, знаниями об увиденных ранее аналогичных объектах. Это означает, что значительная часть нашего восприятия – не столько фиксированная, сколько приобретенная в результате обучения реакция на зримый объект. Нейронные сети распознают определенные комбинации признаков, когда они их видят.
Куда это приведет нас в наших поисках понимания механизмов восприятия, мышления, эмоций? Конкретные детали нам неизвестны, но мы можем заглянуть в далекое будущее и попробовать увидеть ответ. Это будут фактологические, поддающиеся проверке научные знания в каждой точке. В этой книге мы с вами пройдем часть пути – до того места, где сенсорный опыт превращается в восприятие и мысль.
Наконец, где во всем этом наше «я»? Легко говорить о мозге с позиции внешнего наблюдателя, но что представляет собой – и где обитает – тот «внутренний человек», который смотрит на мир нашими глазами? Задумываясь об этом, мы неизбежно наталкиваемся на вопрос о природе сознания, нашего «я», а на этом пути мы, люди, едва ли сделали первые шаги. Я затрону эту тему в конце книги, не давая ответов, но постаравшись чуть более четко обозначить проблему.
Часть I
Зрение: Первые шаги к пониманию
В 1960-х гг. в Гарвардском университете уважаемый профессор Джейкоб Бек читал курс, незатейливо назвавшийся «Восприятие». Лекции проходили в небольшой аудитории, втиснутой в углу Мемориального холла – величественного готического здания из темно-красного кирпича, возведенного в XIX в. в память гарвардцев, погибших в Гражданской войне. Около сотни коричневых деревянных столов, покрытых за прошедшее столетие бесчисленными слоями пожелтевшего лака, ступенчато спускались к огромной черной доске, которая занимала всю переднюю стену. Через редкие окна, расположенные высоко на левой стене, виднелось холодное небо, но лампы накаливания заливали теплым желтым светом аудиторию, в которой находилось 30–40 студентов.
Манера преподавания Бека была такой же простой и ясной, как и название его курса. Он придерживался классического стиля, считая, что его главная задача – четко и организованно изложить учебный материал, а не увлечь студентов. В ходе лекций он пользовался тщательно подготовленными конспектами и в начале каждого занятия обязательно уделял несколько минут тому, чтобы повторить основные моменты предыдущей лекции.