Тридцать разных параметров в каждой точке – это огромное количество информации, которая, безусловно, очень полезна, – но как мозгу переработать весь этот объем? Как все эти разрозненные сигналы, на которые скрупулезно раскладывается исходное изображение, собираются в единую картину видимого мира? То, что субъективно кажется нам целостным изображением, в действительности представляет собой совокупность множества различных репрезентаций. Как эти отдельные изображения вновь объединяются в единое целое – одна из главных загадок зрительного восприятия, о которой мы подробнее поговорим в последних главах.
До 2000-х гг. сетчатка считалась простой нервной системой, состоящей всего из нескольких основных типов клеток. Открытие 29 видов амакриновых клеток и 13 видов биполярных клеток шокировало ученых. На самом деле поначалу эта идея наткнулась на серьезное неприятие. «Да вы, анатомы, просто страдаете маниакальной одержимостью расчленять все на части, – обвиняли нас критики. – Вы считаете, что каждый новый отросток дает вам новый тип клеток». Но доказательства были неопровержимы: особая анатомическая структура клетки, как правило, дополнялась ее особой биохимией и физиологией, а это, в свою очередь, означало, что данная клетка играла в сетчатке особую, отличную от других роль. Другими словами, разные по форме клетки всегда выполняли разные функции.
Прежде существовали и другие намеки на то, что остальная часть нервной системы столь же сложна, но все они по большому счету игнорировались. После публикации моей лабораторией статьи об обнаружении 29 типов амакриновых клеток один авторитетный нейробиолог подсчитал, что в коре головного мозга может существовать около тысячи различных типов нейронов – что намного превышало любые предыдущие оценки[19]
. В конце концов ученые осознали, что сетчатка далеко не так проста, как считалось прежде, а остальная нервная система и вовсе умопомрачительно сложна.На рисунке ниже показаны многие типы клеток, присутствующие в типичной сетчатке млекопитающих. Почему многие, а не все? Потому что уже после создания этого рисунка были открыты новые типы. Тем не менее этот рисунок хорошо иллюстрирует всю сложность нервной системы. Обнаружение такого количества разнообразных типов нейронов кардинально изменило наши представления о том, как функционирует сетчатка глаза: если раньше мы считали, что для понимания работы сетчатки нам достаточно исследовать несколько основных ее составляющих и их комбинаций, то теперь мы встали перед необходимостью изучить около сотни различных микросхем.
Лаконичная максима Стива Куффлера оказалась как нельзя более верной: изучая конкретное, мы действительно узнали кое-что важное об общем – то, что наша нервная система намного разнообразнее и, следовательно, гораздо сложнее в численном плане, чем предполагалось раньше. И узнали мы это, считая нейроны сетчатки.
Часть II
В дебрях мозга
Давайте на минутку остановимся и спросим: что дала нам эта многотрудная работа? Прибыль такова: мы выявили фундаментальный принцип обработки зрительной информации, состоящий в том, что визуальное изображение раскладывается сетчаткой примерно на 30 параллельных потоков сигналов, каждый из которых сообщает мозгу о конкретном аспекте видимого мира. Другими словами, мы воспринимаем видимый мир как совокупность 30 различных параметров, из которых в настоящее время нам известны лишь некоторые: края (контуры), освещенность, движение и цвет. Такой набор из 30 закодированных сигналов передается в мозг о каждой точке видимой картины. Кроме того, вскоре мы поговорим про замечательный набор простых детекторов на входе зрительного проводящего пути в кору мозга. Например, клетки первичной зрительной коры реагируют на такие точные стимулы, как края строго определенной ориентации.
Но насколько все эти знания продвигают нас к нашей конечной цели – ответу на вопрос, как мы узнаем в толпе знакомое лицо, которое может отображаться на сетчатке в сотнях тысяч различных вариантов?