Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

4. Разложение на составляющие повышает точность оценки, особенно когда приходится иметь дело с очень высокой степенью неопределенности. Модели, требующие проведения конкретных вычислений, а не подсчетов в уме, позволяют избежать многих ошибок в выводах, как правило, свойственных экспертам.

В данной главе наши измерения различных методов оценки риска были сосредоточены на ранее опубликованных результатах научных исследований отдельных компонентов процесса оценки риска, включая альтернативные инструменты оценки вероятностей (с помощью экспертов или алгоритмов), способы контроля несогласованности оценки экспертов, их сотрудничество и разложение на составляющие. Внимание уделялось только тем компонентам, о которых у нас есть данные исследований, показывающие, что альтернативные методы способны измеримо улучшить результаты.

Все компоненты методов, представленных в главе 3, и всё, о чем пойдет речь далее, опираются на результаты исследований. Нами не будут разбираться компоненты методов, по которым не проводились исследования, и, что не менее важно, не будут применяться методы, которые, как было доказано, увеличивают вероятность ошибки. Учитывая важность оценки рисков кибербезопасности, следует продолжать искать пути совершенствования методов. Никогда не стоит забывать о скептицизме, вынуждающем нас задаваться вопросом: «Откуда я знаю, что это работает?»

Позже будет рассказано, как выйти за рамки существующих исследований и статистически грамотно отслеживать собственные данные, чтобы еще больше снизить неопределенность и иметь возможность постоянно совершенствовать методы оценки рисков. А в следующей главе мы продолжим анализ компонентов на основе существующих исследований, но сосредоточимся на методах, которые не приводят к улучшению результатов или даже ухудшают их. Это необходимо сделать, так как данные компоненты фактически являются частью наиболее широко используемых методов и стандартов в области кибербезопасности. Пришло время решить эти вопросы раз и навсегда, а также дать ответы на распространенные возражения против использования рекомендуемых нами методов количественной оценки.

Примечания

1. C. Tsai, J. Klayman, and R. Hastie, “Effects of Amount of Information on Judgment Accuracy and Confidence,” Organizational Behavior and Human Decision Processes 107, no. 2 (2008): 97–105.

2. Stuart Oskamp, “Overconfidence in Case-Study Judgments”, Journal of Consulting Psychology 29, no. 3 (1965): 261–265, doi:10.1037/h0022125. Reprinted in Judgment under Uncertainty: Heuristics and Biases, ed. Daniel Kahneman, Paul Slovic, and Amos Tversky (Cambridge, UK: Cambridge University Press, 1982).

3. P. Andreassen, “Judgmental Extrapolation and Market Overreaction: On the Use and Disuse of News,” Journal of Behavioral Decision Making 3, no. 3 (July – September 1990): 153–174.

4. C. Heath and R. Gonzalez, “Interaction with Others Increases Decision Confidence but Not Decision Quality: Evidence against Information Collection Views of Interactive Decision Making,” Organizational Behavior and Human Decision Processes 61, no. 3 (1995): 305–326.

5. D. A. Seaver, “Assessing Probability with Multiple Individuals: Group Interaction versus Mathematical Aggregation,” Report No. 78–73 (Los Angeles: Social Science Research Institute, University of Southern California, 1978).

6. S. Kassin and C. Fong, “I’m Innocent!: Effects of Training on Judgments of Truth and Deception in the Interrogation Room,” Law and Human Behavior 23 (1999): 499–516.

7. Paul E. Meehl, Clinical versus Statistical Prediction; A Theoretical Analysis and a Review of the Evidence (Minneapolis: University of Minnesota Press, 1954).

8. R. M. Dawes, D. Faust, and P. E. Meehl, “Clinical versus Actuarial Judgment,” Science (1989), doi:10.1126/science.2648573.

9. William M. Grove and Paul E. Meehl, “Comparative Efficiency of Informal (Subjective, Impressionistic) and Formal (Mechanical, Algorithmic) Prediction Procedures: The Clinical-Statistical Controversy,” Psychology, Public Policy, and Law 2 (1996): 293–323.

10. William M. Grove et al., “Clinical versus Mechanical Prediction: A Meta-Analysis,” Psychological Assessment 12, no. 1 (2000): 19–30.

11. Paul Meehl, “Causes and Effects of My Disturbing Little Book,” Journal of Personality Assessment 50 (1986): 370–375.

12. William Bailey et al., “Taking Calculated Risks,” Oilfield Review 12, no. 3 (Autumn 2000): 20–35.

Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги