Кому-то это, возможно, будет тяжело признать, но вывод из нашего опроса столь же неизбежен, сколь и суров. Кибербезопасность – крайне важная тема, вызывающая растущую озабоченность, и мы не можем позволить себе тянуть с решением этой проблемы. Как говорилось в главе 4, а также ранее в данной главе, нужно непредвзято оценивать все модели, в том числе количественные, поэтому мы не стремимся заставить критиков замолчать. Однако пустые возражения против количественных методов следует воспринимать всего лишь как боязнь статистики, порожденную статистической безграмотностью.
Уверены, что получим письма от читателей по этому поводу. Но расчеты обоснованы, а в аргументах против нашего вывода будут содержаться серьезные изъяны (мы знаем, поскольку уже много раз с ними сталкивались). В проведении нашего анализа помогал сотрудник компании Hubbard Decision Research Джим Клинтон – старший специалист по количественному анализу. У него докторская степень в области когнитивной психологии, и им опубликованы научные исследования по применению передовых статистических методов в экспериментальной психологии. Так что да, он знал, что делал, когда оценивал статистическую достоверность опроса. Упоминаем об этом, предвосхищая возражения касательно методов опроса, количества и типа предложенных вопросов и статистической значимости в целом. Методы, размер выборки и корректно составленные ответы на вопросы для определения уровня статистической грамотности вполне валидны. Однако нам известно по прошлому опыту и из результатов этого опроса, что найдутся заблуждающиеся в оценке своих познаний о статистических методах люди, которые решат, что раз выводы противоречат неким математическим вычислениям, производимым ими в уме, значит, результаты опроса ошибочны. Это не так. Мы не прикидывали в уме. Мы проводили реальные вычисления. Теперь давайте продолжим.
Согласившиеся с утверждением «порядковые шкалы или качественные методы устраняют проблемы количественных методов» 29 % испытуемых были подвержены разновидности заблуждения Exsupero Ursus. Ход рассуждений здесь примерно такой: раз количественные методы несовершенны, то надо использовать альтернативу, которая каким-то образом исправит их ошибки. Но что это за предполагаемый механизм коррекции? Как видно из представленных ранее исследований, порядковые шкалы и матрицы риска не только не исправляют ошибки количественных методов, но и добавляют к ним свои собственные.
Опять же, на наш взгляд, нужно задавать неудобные вопросы о любых методах, включая количественные, и мы попытались сделать это, представив многочисленные результаты исследований в доказательство своей точки зрения. Не менее скептически мы относимся и к популярным более мягким альтернативам, продвигаемым многими организациями по стандартизации и консалтинговыми компаниями. Мы процитировали исследование, последовательно раскрывающее недостатки этих методов и выявляющее
«Вероятностные методы непрактичны, так как вероятности требуют вычисления точных данных, а у нас их нет» – распространенное возражение на использование статистики во многих областях, не только в кибербезопасности. В нашем исследовании с ним согласились 23 % респондентов. Тем не менее, как упоминалось в главе 2, у вас
К счастью, как и в случае с другими вопросами на выявление негативного отношения к количественным методам, большинство респондентов не согласны с утверждением и склоняются к тому, чтобы пробовать более эффективные методы. Однако 23 % – значительная часть специалистов в области кибербезопасности, которые в корне не понимают причин использования вероятностных методов. Один из согласившихся с утверждением написал следующее в разделе опроса для ответов в произвольной форме: