Другими факторами могут быть мотивация и опыт оценки. Хаббард обычно обучает опытных менеджеров и аналитиков, большинство из которых знают, что им придется применять новые навыки для реальных оценок. Дейл Ренигк из Университета Северной Каролины в Чапел-Хилле провел подобный тренинг для своих студентов и отметил гораздо более низкий показатель калибровки (хоть и все равно со значительным улучшением). В отличие от менеджеров, студентам редко приходится оценивать что-либо, и возможно, это стало одним из факторов, повлиявших на результаты. Как было замечено на семинарах, проводимых самим Хаббардом, те, кто не ожидает, что полученные навыки понадобятся в будущем для оценки проблем в реальном мире, почти всегда демонстрируют незначительные или нулевые улучшения.
Есть еще один чрезвычайно важный эффект калибровки. Помимо улучшения способности субъективно оценивать шансы калибровка, похоже, избавляет от возражений против вероятностного анализа при принятии решений. До обучения калибровке людям может казаться, что любая субъективная оценка бесполезна, а единственный способ узнать ДИ – провести вычисления, которые они смутно припоминают из университетского курса статистики. Они могут не доверять вероятностному анализу в целом, поскольку все вероятности кажутся им произвольными. Однако после калибровки редко кто мыслит подобными категориями. Судя по всему, проблема решается за счет получаемого практического опыта указания вероятностей, благодаря чему постепенно приходит понимание, что это – измеримый навык, в котором можно добиться реальных улучшений. И хотя это не было целью Хаббарда в начале работы по калибровке специалистов, в итоге стало ясно, насколько данный процесс важен для формирования положительного отношения к концепции вероятностного анализа при принятии решений.
Теперь вам известно, как можно количественно оценить текущую неопределенность, научившись предоставлять калиброванные вероятности. Этот навык имеет решающее значение для следующего шага в измерениях.
1. P. Laplace,
2. D. Kahneman and A. Tversky, “Subjective Probability: A Judgment of Representativeness,”
3. Фишхофф Б., Филлипс Л. Д., Лихтенштейн С. Калибровка вероятностей: положение дел к 1980 г. // Принятие решений в неопределенности. Правила и предубеждения / Под ред. Д. Канемана, С. Пауля, А. Тверски. – Харьков: Гуманитарный центр, 2021. – 540 с.
4. Там же.
5. Там же.
6. L. J. Savage, The Foundations of Statistics (New York: John Wiley & Sons, 1954), 2.
7. Идье В., Драйард Д., Джеймс Ф. и др. Статистические методы в экспериментальной физике. – М.: Атомиздат 1976. – 335 с.; Byron P. Roe,
8. C. C. Brown, “The Validity of Approximation Methods for the Interval Estimation of the Odds Ratio,”
9. Steve C. Wang and Charles R. Marshal, “Improved Confidence Intervals for Estimating the Position of a Mass Extinction Boundary,”
Доверительные интервалы: 1. 203. 2. 1687. 3. 8,9. 4. 1969. 5. 1564. 6. 3,944. 7. 78,5 %. 8. 88. 9. 560. 10. 1964.
Верно/Неверно: 1. Неверно. 2. Верно. 3. Верно. 4. Неверно. 5. Верно. 6. Верно. 7. Неверно. 8. Верно. 9. Неверно. 10. Верно.
Глава 8. Уменьшение неопределенности с помощью байесовских методов