Регуляция связанных с ДНК белков – гистонов претерпевает возрастзависимые изменения, которые сказываются на уровне активности многих генов, что является важным механизмом старения. Например, систематическое кислородное голодание тканей и хроническое воспаление через различные механизмы приводят к активации фермента, снимающего метильную метку с гистоновых белков. Изменение уровня метилирования гистонов связано с активацией гена циклинзависимой киназы[133] p16, останавливающей репродукцию клетки. Экспрессия p16 является характерным биомаркером клеточного старения. Кроме того, деметилирование определенных гистонов приводит к образованию обширных участков выключенного, неактивного генома. Благодаря плотности упаковки ДНК такие участки можно прокрасить и наблюдать в люминесцентный микроскоп. Они дают нам еще один биомаркер старения клетки. Напротив, с репликативным возрастом клетки происходит утрата гетерохроматина по периферии ядра, который играл важную роль в пространственной упаковке хромосом в ядре и в прикреплении хромосом к ядерной оболочке. Повреждение ДНК клетки, нередко сопровождающее старение, вызывает фосфорилирование одного из гистоновых белков (H2AX), который запускает каскад процессов, заканчивающихся наработкой в клетке еще одного ингибитора циклинзависимых киназ – р21 и остановкой цикла деления клетки.
Метаболомика
Гены кодируют белки-ферменты, исполняющие роль посредников и катализаторов различных метаболических процессов в организме, таких как клеточное дыхание, биосинтез других белков, липидов, углеводов, малых органических молекул.
Метаболомика, согласно Д. Промыслову, имеет ряд преимуществ над другими «омиками». Метаболом весьма чувствителен и предсказуем по отношению к физиологическому состоянию организма. Старение и вмешательства, которые влияют на старение (например, диета), заметно изменяют структуру метаболомной сети[134]. Метаболомный подход является весьма удобным для клинического применения.
Магнитный резонанс (МР) стал главным рабочим инструментом при изучении метаболитов в плазме и сыворотке крови, в образцах мочи. МР-профиль отображает набор резонансов, вызываемых большинством молекул с низкой молекулярной массой, таких как кетоновые тела, органические кислоты, короткоцепочечные жирные кислоты, аминокислоты, фенолы, индолы, ксенобиотики, осмолиты, желчные кислоты. Еще более мощным высокопроизводительным методом метаболомики является Orbitrap масс-спектрометрия.
В плазме крови человека постоянно циркулирует несколько сотен метаболитов. Поскольку кровь омывает все органы, ее состояние может быть интегральным показателем здоровья и скорости старения тела. Как показали результаты исследования Т. Ванг, одновременное повышение в плазме крови уровня метаболитов изоцитрата и таурохолата и некоторых других может свидетельствовать о более низких шансах дожить до 80 лет (табл. 4). Избыток циркулирующего изоцитрата к тому же свидетельствует об увеличении риска сердечно-сосудистых заболеваний. При старении в крови существенно повышается соотношение меди и цинка. Возрастают гомоцистеин и мочевая кислота, которые являются воспалительными маркерами, связанными с сердечно-сосудистыми заболеваниями и гипертонией.
Таблица 4. Уровень метаболитов крови, характеризующий 80-летних (по Т. Ванг, 2014)
Совокупность жиров (называемая липидόм) давно привлекает внимание в связи с возрастом и долголетием. Относительно давно установлено, что при старении в некоторых случаях в крови увеличивается концентрация общего холестерина и свободных жирных кислот.
Протеомика
Протеомика циркулирующих в крови белков также представляет большой интерес. Среди белков плазмы крови много потенциальных биомаркеров скорости старения (табл. 5).
Таблица 5. Протеомные маркеры ускоренного старения в плазме крови
Липиды транспортируются в крови в комплексе с особыми белками-переносчиками. С точки зрения долголетия важно преобладание липопротеинов высокой плотности над липопротеинами низкой плотности и отсутствие избытков еще одного липида – холестерина. Повреждение глюкозой (гликирование) белка ApoB100 в составе липопротеинов низкой плотности ведет к потере его способности взаимодействовать с тканевыми рецепторами, обеспечивающими доставку жиров в клетки тела. Поврежденный ApoB100 начинает восприниматься организмом как чужеродный, вызывающий иммунный ответ. Липопротеины низкой плотности из-за меньших размеров легче проникают в стенку сосуда, где благодаря измененному ApoB100 атакуются иммунными клетками (макрофагами) и фагоцитируются (поглощаются и разрушаются ими). Макрофаги, скопившие много холестерина, превращаются в пенистые клетки, которые погибают, в результате чего кристаллы холестерина откладываются внутри стенки сосудов. Просвет сосуда сужается, он становится более хрупким, и кровоснабжение органов и тканей ухудшается.