Напомню, речь идет только о черно-белых книгах (текст и штриховые рисунки). Не о цветных.
В отзывах к первой части статьи прозвучал много хороших слов и благодарностей. Большое спасибо всем, кто нашел время откликнутся, написать пару строк в комменты, тем более с добрыми словами в мой адрес. Доброе слово, как говорится, и кошке приятно. Всем удачи:-)
Надеюсь, однако, что будет больше замечаний непосредственно по теме. Делитесь своими наработками, рецептами. Некоторые блогеры упомянули о других программах/способах обработки сканов – напишите о них, это будет интересно всем. Профессионалы, расскажите о более серьезных программах, а можно и выложить.
Критикуйте, дополняйте эту статью (это касается всех частей)- ведь это выгодно всем.
Да, я знаю, что надо не грузить общими рассуждениями, а говорить конкретно. Но любое дело лучше делать осмысленно. Осмысление же требует хотя бы самого общего представления о сути предмета.
Если влом читать неконкретные вещи, то можно сразу перейти к Photoshop: Curves, всё, что там написано, можно понять и не читая раздел Философское отступление
Итак, пару слов о шуме (помехе), (полезном) сигнале и фильтрации, в самом общем плане, безотносительно к обработке изображения.
Сигнал.
Имеется ввиду полезный сигнал.
Это исчерпывающее определение. Например, сигналом может быть часть картинки – изображение текста в примере, который мы разбираем. Или голос исполнителя в музыкальном клипе. Или правда в речах политика, если она там есть. И всё, что угодно.
Шум.
А шум, помеха,
Фильтрация, это
Для того, чтобы фильтрация была осуществима, сигнал и шум хоть в чем-то, но должны отличаться. Т.е. мы должны найти параметры, свойства, по которым отличаются шум/сигнал и увеличить это различие.
Вернемся к сканам книги. На краях и переплета после сканирования часто бывают черные полосы. Это тоже шум. От полезного сигнала, изображения текста, он отличается расположением в двумерном пространстве изображения страницы, поэтому отделить его легко руками и относительно легко автоматически. Стоит, однако, неплотно прижать толстую книгу при сканировании и черная полоса будет пересекаться с текстом. И всё, выделить текст в этом месте методами обработки изображения станет невозможно. Но если речь идет всего о 1-2 буквах в начале (конце) строки, мозг, почти на 100% восстановит недостающие буквы. Вдь ткст очн избтчн, при удални глснх всё ещ мжно пнть о чм рчь. Однако фильтрация и восстановление будет идти не изображения, а текста как последовательности букв и слов, с учетом их смысла, семантики.
Программа NeatImage, описанная в 1-ой части статьи использует другой критерий различения шума и сигнала – разницу в двумерных спектрах сигнала и шума. Обратите внимание: указывать где шум, а где сигнал нам пришлось самостоятельно. В иных случаях шум и сигнал могут поменяются местами. Например, криминалисту может быть задан вопрос: – "Где взята бумага, на которой написана жуткая записка?". И фактура бумаги была бы полезным сигналом, а изображение текста – шумом. В 3-й части статьи будет описана работа с фильтром Фотошопа Smart Blur. Там используются другие критерии разделения сигнала и шума.
Нужно обязательно понимать, по какому критерию происходит разделение сигнала и шума в используемых вами процедурах фильтрации. Тогда можно будет выработать более эффективный метод обработки.
Ведь если мы по очереди применим несколько фильтров с разными критериями фильтрации, то результат будет хороший. Если же фильтры обрабатывают по одному и тому же критерию, то с какого-то момента, улучшения не будет, а то и начнется ухудшение разделения.
Здесь описана работа с Фотошопом, но подобный инструмент есть в любом достаточно мощном растровом редакторе: Gimp, Corel Photopaint, PaintShop Pro и др. Алгоритмы у всех одинаковы. Важно лишь наличие у редактора режима пакетной обработки.