Теперь посмотрим, какие результаты может дать расчет цен покупки и продажи валюты для двухнедельного инвестиционного периода. С этой целью построим статистическую модель, по которой можно делать прогноз по курсу доллара к рублю с упреждением в две недели. Полный список действий, которые необходимо выполнить при разработке такой модели, можно найти в главе 6 (см. алгоритм действий № 22 «Перечень действий, необходимых для построения статистической модели, представляющей собой уравнения авторегрессии (AR) или уравнения авторегрессии со скользящей средней (ARMA)»). Однако на подробном описании этих действий мы сейчас не будем останавливаться, поскольку с методикой построения статистических моделей наш читатель уже знаком, поэтому здесь дадим только краткую характеристику этой модели, а также остановимся на наиболее интересных моментах, связанных с ее разработкой.
На основе базы данных по курсу доллара, взятых с интервалом в две недели (на конец периода) с октября 1998 г. по июнь 2010 г., была построена прогностическая модель, по которой можно делать прогнозы с упреждением в две недели. Вывод данных по итогам решения уравнения регрессии можно увидеть в табл. 7.6.
Подставив в USDOLLAR =
USDOLLAR = 1,2002 + 1,1429 x USDOLLAR(-l) — 0,1842 x USDOLLAR(-2), (7.3)
где USDOLLAR, USDOLLAR(-l), USDOLLAR(-2) — переменные, обозначающие текущий курс доллара, курс доллара с лагом в две недели и лагом в четыре недели.
Интерпретация уравнения (7.3) следующая: в период с октября 1998 г. по июнь 2010 г. рост на 1 руб. курса доллара с лагом в две недели в среднем приводил к повышению прогнозируемого курса доллара на 1,1429 руб.; в свою очередь рост курса доллара с лагом в четыре недели в среднем приводил к снижению прогнозируемого курса доллара на 0,1842 руб.; при исходном уровне курса доллара, равном 1,2002 руб.
Далее оценим точность полученной статистической модели (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»), поместив полученные данные в табл. 7.7. Судя по этой таблице, среднее отклонение по модулю курса доллара от его прогноза за весь период составило всего лишь 28,9 коп., а среднее отклонение по модулю в процентах равняется 1,07 %.
Для сравнения напомним, что у стационарной модели log(USDollar) =
Поскольку исходный уровень временн
Чтобы проверить качество полученной статистической стационарной модели, посмотрим, во-первых, как изменяются с увеличением лага автокорреляция и частная автокорреляция в остатках; во-вторых, насколько соответствуют фактические значения коррелограммы остатков их теоретическим значениям. Судя по рис. 7.2, по мере роста величины лага уровень автокорреляции постепенно снижается, асимптотически стремясь к нулю, а частная автокорреляция упала почти до нуля уже со второго лага. Если сравнить фактический уровень автокорреляции и частной автокорреляции (вертикальные линии) с их теоретическими значениями (верхняя линия), то они практически не отличаются. Все это свидетельствует о хорошем качестве полученной стационарной модели.
Тестирование на импульсный ответ ARMA-структуры модели USDOLLAR = с +