Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

Теперь посмотрим, какие результаты может дать расчет цен покупки и продажи валюты для двухнедельного инвестиционного периода. С этой целью построим статистическую модель, по которой можно делать прогноз по курсу доллара к рублю с упреждением в две недели. Полный список действий, которые необходимо выполнить при разработке такой модели, можно найти в главе 6 (см. алгоритм действий № 22 «Перечень действий, необходимых для построения статистической модели, представляющей собой уравнения авторегрессии (AR) или уравнения авторегрессии со скользящей средней (ARMA)»). Однако на подробном описании этих действий мы сейчас не будем останавливаться, поскольку с методикой построения статистических моделей наш читатель уже знаком, поэтому здесь дадим только краткую характеристику этой модели, а также остановимся на наиболее интересных моментах, связанных с ее разработкой.

На основе базы данных по курсу доллара, взятых с интервалом в две недели (на конец периода) с октября 1998 г. по июнь 2010 г., была построена прогностическая модель, по которой можно делать прогнозы с упреждением в две недели. Вывод данных по итогам решения уравнения регрессии можно увидеть в табл. 7.6.

Подставив в USDOLLAR = с + а x USDOLLAR(-l) — b x USDOLLAR(-2) значения коэффициентов из табл. 7.6, получим следующую формулу:

USDOLLAR = 1,2002 + 1,1429 x USDOLLAR(-l) — 0,1842 x USDOLLAR(-2), (7.3)

где USDOLLAR, USDOLLAR(-l), USDOLLAR(-2) — переменные, обозначающие текущий курс доллара, курс доллара с лагом в две недели и лагом в четыре недели.

Интерпретация уравнения (7.3) следующая: в период с октября 1998 г. по июнь 2010 г. рост на 1 руб. курса доллара с лагом в две недели в среднем приводил к повышению прогнозируемого курса доллара на 1,1429 руб.; в свою очередь рост курса доллара с лагом в четыре недели в среднем приводил к снижению прогнозируемого курса доллара на 0,1842 руб.; при исходном уровне курса доллара, равном 1,2002 руб.

Далее оценим точность полученной статистической модели (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»), поместив полученные данные в табл. 7.7. Судя по этой таблице, среднее отклонение по модулю курса доллара от его прогноза за весь период составило всего лишь 28,9 коп., а среднее отклонение по модулю в процентах равняется 1,07 %.

Для сравнения напомним, что у стационарной модели log(USDollar) = сb x log(USDollar(-1)) + МА(1) с оптимизированным временным рядом, делающей прогнозы с упреждением в один месяц, среднее отклонение по модулю курса доллара от его прогноза оказалось равно 41,5 коп., а среднее отклонение по модулю в процентах — 1,53 % (см. табл. 6.23).

Поскольку исходный уровень временнoго ряда оказался стационарным, то при построении статистической модели USDOLLAR = с + а x USDOLLAR(-l) — b x USDOLLAR(-2) мы не стали переходить к логарифмическому временному ряду. О стационарности исходного временного ряда свидетельствуют итоги тестирования исходного временного ряда на стационарность с помощью расширенного теста Дикки — Фуллера (табл. 7.8). Поскольку в результате нам удалось получить уровень значимости (Prob.*) одностороннего t-критерия (t-Statistic), равный нулю, то, следовательно, нулевая гипотеза о нестационарности исходного временного ряда отвергается и принимается альтернативная гипотеза о его стационарности.

Чтобы проверить качество полученной статистической стационарной модели, посмотрим, во-первых, как изменяются с увеличением лага автокорреляция и частная автокорреляция в остатках; во-вторых, насколько соответствуют фактические значения коррелограммы остатков их теоретическим значениям. Судя по рис. 7.2, по мере роста величины лага уровень автокорреляции постепенно снижается, асимптотически стремясь к нулю, а частная автокорреляция упала почти до нуля уже со второго лага. Если сравнить фактический уровень автокорреляции и частной автокорреляции (вертикальные линии) с их теоретическими значениями (верхняя линия), то они практически не отличаются. Все это свидетельствует о хорошем качестве полученной стационарной модели.

Тестирование на импульсный ответ ARMA-структуры модели USDOLLAR = с + а x USDOLLAR(-l) — b x USDOLLAR(-2) также показало ее стационарность. Рисунок 7.3 показывает, что величина импульсного ответа — по мере увеличения периодов тестирования на внешние шоки (инновационную неопределенность) — асимптотически стремится к нулю. Если проанализировать динамику накопленного импульсного ответа, то по мере увеличения периодов тестирования его величина стабилизируется на определенном уровне, что также свидетельствует о стационарности построенной статистической модели.

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес