Читаем Как продлить быстротечную жизнь полностью

Многочисленные случаи выздоровления больных, использовавших метод ВЛГД (в основном это были астматические заболевания), говорят прежде всего о том, что этот метод затрагивает какие-то важные физиологические функции организма. Сам автор метода ВЛГД замечает, что многие болезни, в том числе и бронхиальная астма, связаны с нарушением кислотно-щелочного равновесия в организме. Поэтому задержкой в организме углекислого газа при неглубоком дыхании можно попытаться сдвинуть реакцию крови в кислую сторону.Как видим, что-то уже проясняется: не столько углекислый газ нужен организму, сколько его влияние на реакцию крови.

Но какой должна быть оптимальная реакция крови и какова причина самого глубокого дыхания — ответа на эти вопросы автор метода ВЛГД не дает.

В КАКОЙ МЕРЕ НАМ НУЖЕН КИСЛОРОД?

Здесь я предлагаю читателям кратко рассмотреть как в процессе эволюции совершенствовалось дыхание у живых организмов. Известно, что растения улавливают энергию солнечного света и запасают ее в виде химических соединений, главным образом в виде углеводов. Этими запасами могут воспользоваться не только растения, но и животные, которые получают необходимое им горючее, поедая или сделанные растениями запасы, или же сами растения. Но съеденная животными пища еще не является энергией. Для высвобождения энергии необходимо контролируемое окисление молекул пищи, что и происходит в процессе дыхания. Для дыхания в целом в качестве акцептора электронов (принимающего электроны) необходим кислород.

Что кислород необходим нашему организму — это, кажется, ясно каждому. Другое дело — в какой мере он необходим? Возможно, что кислорода и в самом деле в атмосфере настолько много, что мы вдыхаем его даже в излишнем количестве. Подобная мысль содержится и в книге Ю. А. Мерзлякова "Путь к долголетию" (с подзаголовком — Энциклопедия оздоровления):

Гипервентиляция, повышая содержание кислорода в крови (а Бутейко говорит, что гипервентиляция не прибавляет насыщения крови кислородом, — прим. Н. Д.) и тканях, приводит к сдвигу реакции крови в щелочную сторону. Организм сопротивляется этому, стремится не допустить повышенного количества кислорода, так как его избыток организму не нужен. Кислород необходим только при выполнении физической работы, после чего он тут же используется для энергетических целей. Чтобы не допустить излишка кислорода, включаются механизмы защиты: сужаются бронхи, спазмируются артерии мозга, сердца, легких и т. д. Субъективно это выражается в повышении артериального давления, затруднении дыхания, головокружении, головных болях, спазмах кишечника и других неприятных симптомах.

Я полностью не согласен с тем, о чем говорится в этой цитате, но смогу прокомментировать сказанное в ней только в конце этой главы, когда читатели будут более подготовлены по вопросу дыхания, а сейчас продолжу разговор о кислороде.

Когда-то кислорода совсем не было в атмосфере Земли (первичная атмосфера состояла из водяных паров, двуокиси и окиси углерода, аммиака, азота и сероводорода) и первые живые организмы добывали необходимую им энергию без помощи кислорода, лишь частично расщепляя глюкозу с последующим образованием двух молекул пировиноградной кислоты. Последняя в отсутствии кислорода превращалась в молочную кислоту. Таким путем высвобождалась запасенная в глюкозе энергия без участия кислорода — это анаэробное дыхание.

В смысле энергообеспечения клеток анаэробное дыхание — крайне неэффективный процесс, потому что значительная часть энергии, которую можно было бы извлечь при полном окислении глюкозы, все еще остается невостребованной.

Когда же в процессе фотосинтеза растения начали выделять кислород в качестве побочного продукта и он постепенно стал накапливаться в атмосфере, то использование его живыми организмами при аэробном дыхании дало возможность им извлекать больше энергии из пищевых веществ. С этого момента и начался своеобразный взрыв в развитии жизни на Земле.

Теперь нам ясно, что анаэробный путь извлечения энергии возник на самых ранних этапах развития жизни, когда кислорода в атмосфере Земли совсем не было. Когда же в атмосфере появился кислород, то живые организмы не замедлили воспользоваться им, так как теперь в процессе метаболизма стало возможным извлекать из углеводов в 18 раз больше биологически полезной энергии в сравнении с анаэробным дыханием. Суммарный выход АТФ (аденозинтрифосфат, играющий роль разменной монеты в реакциях энергетического обмена у всех живых существ) при аэробном дыхании составляет 36 молекул вместо двух при анаэробном.

Перейти на страницу:

Похожие книги

Поджелудочная и щитовидная железа. 800 лучших рецептов для лечения и профилактики
Поджелудочная и щитовидная железа. 800 лучших рецептов для лечения и профилактики

Не секрет, что поджелудочная и щитовидные железа играют огромную роль в нашем организме. Например, поджелудочная железа поддерживает пищеварение и принимает участие в регулировании энергетического обмена, а гормоны, вырабатываемые щитовидной железой, регулируют процессы обмена жиров, белков и углеводов, деятельность сердечно-сосудистой системы, ЖКТ, психическую и половую деятельность. Заболевания этих органов могут привести к очень серьезным, а порой и необратимым последствиям. Именно поэтому так важно уделять особое внимание их состоянию.В новой книге Н. И. Мазнева описаны проверенные и эффективные способы борьбы с заболеваниями эндокринной системы. Внутри книги вы найдете простые рекомендации и рецепты для профилактики и борьбы с панкреатитом, диабетом, гипертиреозом, гипотиреозом, а также ожирением и многими другими заболеваниями.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Необходимо проконсультироваться со специалистом перед применением любых рекомендуемых действий.

Николай Иванович Мазнев

Здоровье / Медицина / Здоровье и красота / Дом и досуг / Образование и наука