Читаем Как работает Вселенная: Введение в современную космологию полностью

Как можно узнать пространственную кривизну Вселенной? Если бы Вселенная не расширялась или мы могли бы перемещаться с бесконечной скоростью, это можно было бы сделать достаточно просто. Приведем аналогию. Представим двумерных существ, живущих на поверхности сферы. Их мир не имеет границ, но имеет вполне конечную площадь – 4πR2. Любую точку можно считать центром мира. Отношение длины окружности к радиусу меньше 2π. Более того, если мы выберем произвольную точку, скажем полюс, и начнем проводить вокруг нее окружности все большего радиуса (параллели), то вначале их длина будет расти, достигнет максимума на экваторе, а потом будет падать (см. рис. 2.4). Длина внешней окружности будет меньше длины вложенной в нее внутренней. Если заменить окружности заборами, то существо, которое их начнет красить снаружи, через некоторое число покрашенных заборов обнаружит, что окружено последним забором со всех сторон, причем окружено с наружной стороны забора.

В трехмерном пространстве с положительной кривизной отношение площади сферы к квадрату радиуса будет меньше 4π. Площадь концентрических сфер с увеличением их радиуса вначале растет, потом падает.

Если кривизна равна нулю, то двумерные существа живут на плоскости, а трехмерные (мы) – в плоском пространстве. Работает (в идеальном случае) евклидова геометрия, отношение площади сферы к квадрату радиуса равно 4π, нет границ, объем Вселенной бесконечен.

Если кривизна отрицательна, то отношение площади сферы к квадрату радиуса будет больше 4π. Площадь концентрических сфер с увеличением их радиуса всегда растет. Нет границ, объем бесконечен.

Данные наблюдений не позволяют с уверенностью исключить ни один из этих вариантов. Но они показывают, что Вселенная либо плоская, либо достаточно близка к плоской. Этот вариант выделен и из теоретических соображений, как будет объяснено в разделе 5.

Для определения кривизны мы могли бы также рассматривать достаточно большие треугольники и измерять сумму их углов. Если она равна 180°, мы имеем дело с плоским пространством. Если она больше, кривизна положительна, как показано на рис. 2.5. Если меньше, кривизна отрицательна. Интересно, что подобный метод предложил еще Карл Фридрих Гаусс, который думал над практической реализацией этого метода, причем в качестве вершин треугольника предлагал использовать три горные вершины.

Но перейдем к реальному миру. Пространство на масштабах, в которых существует человечество, не является ни однородным, ни изотропным. Например, если мы построим треугольник на плоскости, перпендикулярной к Солнцу, точнейшие измерения показали бы, что сумма углов треугольника больше 180°. Естественно, в качестве сторон треугольника выступают лучи света в вакууме. Если же повернуть эту плоскость так, чтобы она проходила через Солнце, то сумма углов треугольника стала бы меньше 180°. Это следует из анализа метрики Шварцшильда, описывающей поле сферически симметричного тела в ОТО.

Поэтому проводить описанные здесь эксперименты имеет смысл только на масштабах, превышающих масштабы неоднородностей во Вселенной. Иными словами, на масштабах, существенно превышающих размеры нашей Галактики. Однако в идеальном случае однородной изотропной Вселенной мы можем рассматривать подобные мысленные эксперименты, чтобы лучше понять различие между разными типами расстояний, вводимых в кривом пространстве. Для реальных же наблюдений совершенно необходимы большие масштабы. И все описанные ниже наблюдения – по вспышкам сверхновых, по неоднородностям реликтового излучения, по барионным акустическим колебаниям – удовлетворяют этому требованию.

Отметим один забавный нюанс, касающийся замкнутой модели Вселенной. Если бы Вселенная не расширялась, а скорость света была бесконечной, то, посмотрев в сверхмощный телескоп, мы могли бы увидеть собственный затылок. Это явление аналогично тому, что путешественник, идущий строго на запад, в конце концов вернется в исходную точку. С этим обстоятельством были связаны весьма наивные наблюдения, предпринятые некоторыми астрономами достаточно давно. Они наводили свой телескоп в сторону, прямо противоположную наиболее далеким из известных в то время астрономических объектов, в попытке увидеть их с другой стороны. На самом деле знакомство с релятивистской космологией не в популярном изложении избавило бы их от напрасных наблюдений. Дело в том, что даже если реальная Вселенная замкнута, она расширяется, а потом сжимается. Время, необходимое свету на то, чтобы обогнуть всю замкнутую Вселенную, как показывают расчеты, больше времени существования такой Вселенной от Большого взрыва до Большого хруста.

<p>2.6. Масштабный фактор</p>
Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука