Читаем Как работает Вселенная: Введение в современную космологию полностью

Принципиальный шаг в исследовании свойств реликтового излучения был связан с использованием космических аппаратов. К этому моменту астрономы уже вывели в космос свои инструменты, используя специальные астрономические спутники. Вывод астрономических инструментов за пределы атмосферы решил две задачи. В тех диапазонах электромагнитного излучения, где атмосфера прозрачна, например для видимого света, атмосфера все-таки портит качество изображения за счет флуктуаций плотности и других явлений. Все мы знаем, что звезды на небе мерцают. Этот эффект связан исключительно со свойствами атмосферы и, естественно, мешает качественным наблюдениям звезд. Астрономы по мере возможности боролись с этой помехой, располагая телескопы высоко в горах, но к описываемому времени все, что мог дать этот метод, было давно исчерпано.

Что касается тех диапазонов, где атмосфера непрозрачна, то выход в космос открыл невиданные до тех пор перспективы. Основными из таких диапазонов являются инфракрасный, ультрафиолетовый и рентгеновский. Кое-что в этих диапазонах умудряются наблюдать и на Земле. Например, чтобы наблюдать в инфракрасном диапазоне, астрономы отправляются в Антарктиду, которая имеет не только очень низкую температуру воздуха, но и расположена на высоте нескольких километров над уровнем моря.

В случае реликтового излучения ни одна из этих причин не была принципиальной. Атмосфера прозрачна для того диапазона, в котором его наблюдают, в противном случае Пензиас и Уилсон просто ничего бы не обнаружили. Флуктуации в атмосфере могут привести к отклонениям, но на достаточно небольшой угол. Для астрономии это важно, но в то время исследователи реликтового излучения пытались обнаружить какую-либо анизотропию. Проблема была связана с другим фактором. Сейчас мы знаем, что отклонения в температуре реликтового излучения, приходящего из разных участков небесной сферы, отличаются где-то на уровне 10–4 K. Для измерения таких тонких отличий необходимо избавиться от других источники излучения с длиной волн 7,35 см. Реликтовое излучение похоже на излучение от черного тела, нагретого до температуры около 3 K, если про такое тело можно сказать «нагрето». Для нас оно, скорее, охлаждено до –270 °C. К сожалению, сама атмосфера, а также большинство тел при комнатной температуре сильно излучают на этой длине волны. Для того чтобы минимизировать их влияние, космологи установили свои инструменты на высотных воздушных шарах, но те могут одновременно измерить лишь излучение небольшого участка неба.

Именно поэтому для обнаружения дипольной компоненты реликтового излучения понадобился высотный самолет-разведчик. Но космологов больше интересовали флуктуации, не сводящиеся к движению Земли относительно реликтового излучения. Для их поиска использовали воздушные шары с приборами, которые летали продолжительное время в верхних слоях атмосферы.

Выход космологии в космос был связан с запуском в 1983 г. советского космического аппарата «Прогноз-9» с комплексом аппаратуры «Реликт-1» на борту. Он осуществил первые измерения реликтового излучения из космоса. К сожалению, недостаточная чувствительность радиометра и тот факт, что измерения проводились на фиксированной частоте 37 ГГц, привели к сильному затягиванию процесса обработки данных. Тем не менее авторам эксперимента удалось получить ограничения на уровень анизотропии[40]. А в 1989 г. американцами был запущен уже целый космический аппарат COBE (сокращение от COsmic Background Explorer), предназначенный для исследования реликтового излучения. Он использовал модифицированную версию того самого дифференциального радиометра, который был установлен на борту U-2. Первые 15 минут его работы дали больше информации о спектре реликтового излучения, чем было получено за всю историю наземных измерений. В частности, было окончательно подтверждено, что спектр реликтового излучения является планковским[41]. Именно спутник COBE впервые обнаружил анизотропию реликтового излучения, уровень которой был принципиально важен для выбора между разными космологическими моделями.

Интересно, что, несмотря на 6-летнюю разницу в дате запуска, результаты этих двух космических экспериментов были опубликованы практически одновременно: COBE – в апреле, а «Реликта-1» – в мае 1992 г. При этом изначально в результате обработки данных эксперимента «Реликт-1» анизотропия не была обнаружена, а лишь ограничена сверху, но после того, как стали предварительно известны результаты COBE с оценкой спектра анизотропии, авторы эксперимента «Реликт-1» направили в печать новые результаты, в которых анизотропия уже присутствовала. По иронии судьбы, их статьи со старыми и новыми выводами были опубликованы в одном и том же номере журнала Monthly Notices of Royal Astronomical Society, что вызвало определенный скепсис.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука