3.7. Поливерсум и антропный принцип
Сделаем еще одну оценку. Хотя у нас нет никаких оснований предполагать какой-то определенный размер Вселенной в момент начала инфляции, возьмем «с потолка» размер в 1 мм. Он превосходит характерный размер видимой части Вселенной на момент начала инфляции (10–26 м) в 1023 раз. Соответственно, в объеме Вселенной помещается около (1023)3 = 1069 объемов того участка, из которого выросла наблюдаемая часть Вселенной. Поэтому в настоящий момент во Вселенной насчитывается приблизительно 1069 частей Вселенной, не связанных друг с другом причинно и не наблюдаемых друг из друга. Даже если вместо 1 мм мы возьмем 1 микрон (10–6 м) или даже 1 ангстрем (10–10 м), то все равно мы получим гигантское количество независимых друг от друга частей Вселенной, соответственно 1060 или 1048.
Подобные соображения привели к представлению о том, что во Вселенной может действительно существовать гигантское количество независимых частей. Для описания этой идеи вместо английского слова «Universe», обозначающего Вселенную, используются другие слова: «Multiverse» или «Omniverse». В этих словах приставка uni-, означающая «единственный», заменена приставкой «multi», обозначающей «много», и «omni», обозначающей «все». В данной книге мы будем использовать термин «Поливерсум», который использовал известный польский фантаст Станислав Лем.
Интересные результаты получились при объединении идей инфляции и спонтанного нарушения симметрии, за открытие которой Еитиро Намбу получил Нобелевскую премию по физике в 2008 г. Идея спонтанного нарушения симметрии используется в физике элементарных частиц. С ней напрямую связан так называемый бозон Хиггса, обнаруженный на Большом адронном коллайдере в Швейцарии[58].
Дадим очень краткое описание этой идеи. Обычно в физике считается, что симметричные уравнения должны иметь симметричные решения. Например, шарик, положенный в траншею с профилем, показанный на рис. 3.5, окажется в самой нижней ее точке. При этом мы считаем, что от координаты вдоль траншеи ничего не меняется. Гравитационный потенциал симметричный, полученное решение тоже симметрично. Если же профиль траншеи будет таким, как показано на рис. 3.7, то симметричное решение будет неустойчивым. В этом случае шарик случайным образом попадет либо в левую, либо в правую яму. Таким образом, будет реализовано одно из двух возможных несимметричных решений.
Если мы говорим не о скалярном, а о векторном поле, имеющем направление, то число возможных несимметричных решений будет бесконечным. Представьте, что мы имеем дело не с траншеей, а с лункой, полученной в результате вращения профиля, изображенного на рис. 3.7, вокруг вертикальной оси. Понятно, что шарик скатится и попадет в какую-то точку на круговой канаве, но неизвестно, в какую именно. Другой пример: на горизонтальной поверхности мы ставим вертикально длинную тонкую палку. Понятно, что она упадет, но в какую сторону – мы не знаем. Вы можете проверить это в домашних условиях, пытаясь поставить карандаш вертикально на его острие.