Читаем Как работает Вселенная: Введение в современную космологию полностью

Осталась одна небольшая деталь: научиться измерять зависимость v(r). Не для всех галактик это возможно. Если плоскость галактики перпендикулярна направлению на Землю, то скорости вращения звезд имеют только тангенциальные компоненты и не могут быть измерены существующими методами. Если же плоскость галактики наклонена, то скорости вращения звезд имеют еще и радиальные компоненты. В этом случае их можно определить по эффекту Доплера. На рис. 4.2 показана галактика, вращающаяся против часовой стрелки так, что спиральный рукав в точке A движется на нас, а в точке C – от нас. Рисунок сделан в галактической плоскости, наблюдатель на Земле расположен внизу. Эти скорости вращения складываются со скоростью, с которой центр галактики, расположенный в точке B, удаляется от нас. В результате в точке A спектры излучения будут дополнительно сдвинуты в фиолетовую область по сравнению с точкой B, а в точке C – в красную область. Анализируя наблюдаемый спектр галактики, можно определить направление вращения галактики и скорость вращения ее частей. Далее, зная угол наклона плоскости галактики к направлению на Землю, мы можем определить форму кривой вращения. Угол наклона определяется из предположения, что диск галактики круглый, а наблюдаемая эллиптичность связана с ее наклоном. Чем больше угол наклона, тем точнее можно определить кривую вращения. В этом смысле идеальными являются галактики, видимые с ребра.

Естественно, что для того, чтобы получить кривую вращения, мы должны рассмотреть с помощью телескопа разные части галактики. Это можно сделать только для не очень далеких галактик. Для галактик со слишком маленькими угловыми размерами мы не можем получить кривую вращения. Вместо этого мы можем определить ширину линий излучений галактики. В основном она связана с доплеровским сдвигом света, излученного разными частями галактики. В результате вместо кривой вращения мы можем получить только оценку характерной средней величины скорости вращения. Ширина линий излучения активно используется во внегалактической астрономии, но для иллюстрации существования темной материи кривые вращения куда нагляднее.

На рис. 4.3 показано изображение галактики M33 (Треугольник), входящей в Местную группу, т. е. одной из самых близких к нам галактик. На него наложена кривая вращения этой галактики таким образом, что масштаб расстояний совпадает с масштабом изображения. Обратим внимание, что кривая вращения приведена для области, существенно превосходящей видимые размеры галактики. Как это было сделано? Для этого использовались наблюдения небольших водородных облаков, вращающихся вокруг галактики вне ее видимой области. Естественно, закон Кеплера для них выполняется точно так же, как и для звезд. На рисунке кроме реальной кривой вращения изображена теоретическая кривая вращения, которую имела бы эта галактика, если бы вся ее масса была сосредоточена в светящейся компоненте. Легко понять, что за пределами видимой части галактики M(r) доля светящейся материи становится постоянной и v(r) в отсутствие темной материи падала бы по закону v ~ r–1/2. В то же время реальная кривая вращения, напротив, продолжает возрастать далеко за пределами видимой области, показывая, что там должно существовать нечто, вносящее вклад в общую массу галактики. Это и есть темная материя. Согласно существующим представлениям, все галактики окружены гало из темной материи (см. рис. 4.4), размеры которого существенно превосходят размеры видимой части галактики.

Если мы посмотрим на кривые вращения чуть более далеких галактик, то увидим, что v(r) иногда выходит на постоянное значение в широких интервалах изменения r. Такие кривые вращения называются плоскими. Забавно, что в Facebook даже была создана специальная группа сторонников того, что все кривые вращения можно считать плоскими. Эта группа с незатейливым названием «Кривые вращения галактик – плоские» выпустила по этому поводу свой меморандум. Вскоре после этого в той же соцсети появилась группа противников подобного обобщения, справедливо указывающая, что далеко не все кривые вращения галактик можно считать плоскими. Она также выпустила свой меморандум, а ее лидеры организовали серию научных семинаров по всему миру с целью развеять этот миф. К счастью, в научном мире справедливость той или иной гипотезы не определяется количеством лайков в социальных сетях.

Существует одна галактика, кривую вращения которой нельзя определить описанным выше способом. Это – наша Галактика, которую мы видим изнутри. Тем не менее кривая вращения нашей Галактики также получена астрономами, правда с меньшей точностью, чем для близлежащих галактик. Из параметров орбиты Солнца вокруг центра Галактики (радиус – 26 400 св. лет, период – 230 млн лет) по закону Кеплера нетрудно рассчитать массу материи, заключенную внутри орбиты Солнца, – она равняется 1,0×1011 M☉. Полная же масса нашей Галактики составляет около 1012 M☉.

<p>4.2.3. Отношение масса – светимость</p>
Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Бог и Мультивселенная
Бог и Мультивселенная

На наших глазах фантастика становится реальностью. Новейшие исследования позволяют предположить, что наблюдаемая часть Вселенной — лишь крошечный участок несравненно более обширной и грандиозной Мультивселенной. В этой книге увлекательно и доступно рассказано о формировании современной картины мира, о том, как решительно и болезненно она пересматривалась с развитием науки, о том, какие невероятные горизонты открываются перед космологией, стоит только выйти из плоскости, заданной теорией Большого взрыва и традиционной астрофизикой.Последняя работа Виктора Стенджера, в которой он фактически подводит итоги своей научной деятельности и жизни, убедительно доказывает, что Мультивселенная могла возникнуть естественным путем, без вмешательства каких-либо высших сил.

Виктор Стенджер

Астрономия и Космос / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Религия / Эзотерика / Образование и наука