Читаем Как расщепляют мгновение полностью

Вот, ну, как я уже говорил, идея, которая здесь была применена, — очень простая. Если у вас есть перемещение зарядов, а в этой молекуле есть, естественно, перемещение зарядов, то у вас может возникать излучение. Вопрос: какого оно диапазона? Значит, если речь идет про пикосекундный диапазон времен, то одной пикосекунде, если пересчитать это в частоту, отвечает 1012 Гц, то есть это первое герцовое излучение. Ну, как мы слышали, на языке астрономов это называется дальний инфракрасный диапазон. То есть длина волны сотни микрон. Ну и вообще это очень тяжелый для изучения диапазон, как в астрофизике, так и, в принципе, в обычной физике. Вот, то есть в течение долгого времени не было не только надежных методов детектирования слабых терагерцовых импульсов, даже надежных методов генерации слабых терагерцовых импульсов. Поэтому прогресса большого не было. Вот буквально последние 5-10 лет наметилось несколько новых концепций, с помощью которых можно излучать эти терагерцовые волны и детектировать их тоже. То есть сейчас большой проблемы это не представляет.

Итак, если у нас тут будут процессы с типичным временем порядка пикосекунд или долей пикосекунд — то есть это значит, что будет производиться вспышка терагерцового излучения, — вот если эту вспышку задетектировать и промерить, то можно узнать многое... и сравнить с теоретическими расчетами — можно узнать много про динамику перемещения зарядов в этой молекуле. Ну, конечно, нереально от одной молекулы увидеть вспышку терагерцового излучения, особенно с учетом того, что оно плохо детектируется, поэтому здесь на помощь пришел тот факт, что эти молекулы можно концентрировать и выстраивать их примерно, ну, в одном направлении. И поэтому когда у вас есть вспышка света, которая инициирует процессы, то она сразу инициирует процессы в этих тысячах, миллионах молекул. И они все начинают излучать терагерцовое излучение, причем излучение это идет когерентно, то есть сразу со всей пленочки. И вот этот импульс уже можно задетектировать.

Вот картинка этого импульса, который получен в эксперименте. Здесь у нас пикосекунды, здесь, ну, электрическое поле в терагерцовом импульсе, вот эти зелененькие — это точки экспериментальные, видите с какой плотностью они стоят, то есть у нас на каждую пикосекунду приходится, ну, пара десятков этих точечек. И это необходимо, потому что иначе такую быструю динамику просто было бы не заметить. Вот. На эти точки здесь наложено несколько кривых. Что это за кривые — не сильно важно, просто видно, что разные теоретические подходы к описанию отклика этой молекулы, скажем, с учетом переноса электронов или протонов или того и другого вместе дают немножко разные предсказания, и самые лучшие предсказания дает кривая, которая учитывает, скажем, перенос и электронов и протонов. То есть это может показаться каким-то мелким вопросом, но я хочу, чтобы вы обратили внимание на саму методику. То есть с помощью внимательного изучения этого профиля и сравнения с теорией мы можем действительно много что узнать про субпикосекундные явления, то есть про явления, длящиеся сотни фемтосекунд. Вот ссылка на эту статью.

<p>Аттосекунды</p>

Так. Значит, дальше. Хорошо. Ну, фемтосекунды мы прошли, но на этом спектр еще не заканчивается, диапазон времен идет дальше. Следующими идут аттосекунды (1 ас = 10–18 с). Аттосекундный диапазон — это нечто совсем уже передовое, то есть буквально последние годы люди только-только залезли в аттосекундный диапазон с помощью импульсов рентгеновского или далекого ультрафиолетового излучения. То есть сейчас действительно уже можно получать импульсы длительностью в сотни аттосекунд — скажем, 300, 400 аттосекунд — ну и с помощью них изучать процессы, которые происходят тоже на этом масштабе.

Ну, как я уже говорил, на аттосекундном масштабе уже никакого движения атомов совершенно нет, да и электроны, в общем-то, уже почти неподвижны, даже если они не в стационарных слоях. Единственное, что хоть как-то движется на этих масштабах, — это самые-самые внутренние электроны, то есть самые быстрые, самые внутренние электроны в многоэлектронных атомах. И здесь полезно подчеркнуть, что для того чтобы просто оценить, какие явления там происходят, а какие можно считать остановившимися, полезно смотреть не на расстояния, а полезно смотреть на энергии, которые используются в этих процессах.

Перейти на страницу:

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы