К числу защитных реакций растений принадлежат различного рода механические барьеры, как предсуществующие в растении, так и образующиеся в нем в ответ на инфицирование, состоящие из клеток, стенки которых пропитаны стойким веществом типа суберина, кутина и лигнина. Сюда же относятся механизмы, с помощью которых паразит обездвиживается. Важнейшим средством защиты является наличие в растительных тканях антибиотических соединений, способных подавить рост паразита и инактивировать его токсины и экзоферменты. К числу защитных реакций растений относится и их способность создавать в своих тканях недостаток веществ, необходимых паразиту для роста и развития, и другие способы уничтожить паразита или ограничить его рост.
Предметом фитоиммунологии является множество болезней, вызываемых множеством патогенов у множества растений. Если в центре внимания медицины стоит один-единственный вид — Homo sapiens — человек разумный, то фитоиммунология занимается сотнями видов растений, из которых каждый подвержен многим болезням. Естественно, что у разных партнеров могут быть разные защитные механизмы, по крайней мере одним и тем же защитным реакциям может принадлежать разный удельный вес в сумме защитных механизмов разных болезней. Последнее только усиливает необходимость поиска среди них тех общих механизмов устойчивости, которые характерны для растений в целом.
Одной из таких реакций, вероятно, свойственной всему живому, является необходимость обеспечить энергией средства защиты. Ведь для того чтобы бороться, нужны сырье, машины, энергия. Поэтому универсальной ответной реакцией устойчивых растений на большинство неблагоприятных воздействий, в том числе и на инфицирование фитопатогенными микроорганизмами, служит усиление процессов дыхания и энергетического обмена. Большой вклад в исследование роли окисления в больном растении внес советский исследователь профессор Б. А. Рубин, который является основоположником школы о защитных функциях окислительных и энергетических процессов в явлении фитоиммунитета.
Процессы окисления и связанные, или, как говорят, сопряженные, с ними процессы фосфорилирования снабжают клетку энергией. Последняя запасается в виде богатых энергией (макроэргических) фосфорных связей в универсальном биологическом горючем — аденозинтрифосфорной кислоте (АТФ). Молекулы АТФ направляются в те части клеток, где в них возникает необходимость. В устойчивом растении, находящемся в условиях стресса, производство таких молекул возрастает, поскольку построение механических заграждений, обездвиживание паразита и особенно синтез антибиотических веществ требуют затрат энергии.
Дыхание служит не только источником энергии, но и поставщиком исходного пластического материала для различного рода биосинтетических процессов. Поэтому усиление активности дыхания одновременно с энергией поставляет и сырье для синтеза соединений, необходимых для обороны.
Каким образом удается клеткам усиливать процессы окисления и фосфорилирования? Главным образом за счет возрастания числа митохондрий. Митохондрии, как известно, являются энергетическими центрами клетки, в которых и вырабатывается АТФ. Естественно, что две митохондрии вместо одной образуют и вдвое большее количество энергии. Для добывания необходимой энергии и сырья защищающееся растение пускает в ход все свои запасы и резервы. Запасные полимеры клетки в виде различного рода полисахаридов распадаются на составные части, которые сжигаются в акте дыхания. Только такой ценой достигается противостояние паразиту.
Естественно, что генерировать энергию и сырье могут только живые клетки растений. Клетки убитые либо поврежденные токсином, так же как колонизированные паразитом, уже выведены последним из строя и ни на что не пригодны. Поэтому устойчивость прежде всего и состоит в способности растительных тканей не допустить воздействия паразита на свои клетки, с тем чтобы дать возможность соседним здоровым клеткам мобилизовать свои ресурсы на борьбу с инфекцией.
И. И. Мечников писал, что у организмов существуют два типа реакций, защищающих от инфекций. Один из них заключается в обезвреживании токсических выделений паразита, тогда как другой (основной) состоит в подавлении самого паразита. Такое разделение поразительно соответствует различной стратегии защитных реакций растений, направленных против некротрофов и биотрофов.
Выше уже говорилось о том, что некротрофные паразиты еще до проникновения в растительную клетку убивают ее токсинами, а затем питаются содержимым убитых клеток, переваривая их с помощью своих ферментов. Поэтому если стратегия некротрофов состоит в совершенствовании своих орудий убийства, то стратегия защиты от них заключается в обезвреживании этих орудий.