Читаем Как же называется эта книга? полностью

В 1931 г. Курт Гёдель совершил поразительное открытие. Он установил, что математическую истину в некотором смысле нельзя формализовать полностью. Гёдель доказал, что в математической системе, принадлежащей широкому классу систем, всегда найдется утверждение, недоказуемое (то есть невыводимое из аксиом системы), несмотря на свою истинность! Следовательно, ни одной аксиоматической системы, сколь бы остроумно она ни была устроена, не достаточно для доказательства всех математических истин. Гёдель впервые доказал свою теорему для системы “Principia Mathematica” Уайтхеда и Расселла, но предложенное им доказательство, как я уже говорил, допускает перенос и на многие другие системы. Во всех этих системах существует вполне определенное множество выражений, называемых предложениями, которые подразделяются на истинные и ложные. Некоторые истинные предложения приняты за аксиомы системы. Точный перечень правил вывода позволяет доказывать (выводить из аксиом) одни предложения и опровергать другие. Помимо предложений система содержит имена различных множеств (целых и положительных) чисел. Любое множество чисел, наделенное в рассматриваемой системе именем, можно назвать именуемым, или определимым, множеством системы (в предыдущей задаче такие множества скрывались под псевдонимом «учтенные множества»). Весьма существенно, что все предложения можно перенумеровать, а все определимые множества перечислить по порядку. Это означает, что математическая система удовлетворяет условиям E1, Е2, С и Н нашей задачи. (Номер, присваиваемый каждому предложению, – в задаче мы называли его просто номером – в математической логике известен под названием гёделевого номера предложения.) Доказать, что система удовлетворяет условиям С и Н, очень просто. Доказательство того, что система удовлетворяет условиям E1 и Е2, в принципе несложно, но довольно громоздко. Коль скоро доказано, что система удовлетворяет всем четырем условиям, они [10]позволяют построить предложение, которое истинно, но недоказуемо (невыводимо) в данной системе.

Это предложение можно представлять себе как некоторое предложение X, содержащее утверждение о своей недоказуемости. Такое предложение действительно должно быть истинно, но недоказуемо (подобно тому как житель острова G, утверждавший, что он непризнанный рыцарь, действительно был рыцарем, но не был признанным рыцарем).

Возможно, вы спросите: но если известно, что предложение X (содержащее утверждение о своей недоказуемости) истинно, то почему бы не принять его за новую аксиому? Разумеется, мы можем пополнить список аксиом системы еще одной аксиомой, но расширенная система также будет удовлетворять условиям E1, Е2, С и Н. Следовательно, в ней найдется другое предложение X1, которое будет истинным, но недоказуемым в расширенной системе. Таким образом, хотя расширенная система позволяет доказать больше истинных предложений, чем старая, тем не менее и в ней доказать все истинные предложения невозможно.

Должен сказать, что мое изложение метода Гёделя отличается от первоначального доказательства теоремы, предложенного самим Гёделем. Основное отличие состоит в том, что я использую понятие истинности, отсутствующее у Гёделя. Действительно, в первоначальном виде теорема Гёделя не содержит утверждения о существовании в системе истинного, но недоказуемого (невыводимого) предложения. В ней говорится нечто иное: при некотором правдоподобном допущении относительно системы в ней непременно существует предложение (и Гёдель демонстрирует такое предложение), которое в рамках системы невозможно ни доказать, ни опровергнуть.

Понятие истинности было строго формализовано логиком Альфредом Тарским. Он доказал, что для математических систем, удовлетворяющих условиям теоремы Гёделя, множество гёделевых номеров истинных предложений неопределимо в системе. Иногда этот результат формулируют так: «Во всякой достаточно мощной системе истинность предложений системы неопределима в рамках самой системы».

271. Последнее слово

Рассмотрим следующий парадокс:

Это предложение недоказуемо.

Парадокс состоит в следующем. Если это предложение ложно, то неверно, что оно недоказуемо. Следовательно, оно доказуемо, а это означает, что оно истинно. Итак, предположив, что это предложение ложно, мы пришли к противоречию. Значит, оно должно быть истинно.

А теперь будьте внимательны! Я доказал, что предложение, набранное курсивом, истинно. Но в истинном предложении говорится о том, что есть на самом деле. Значит, оно недоказуемо. Как же мне удалось доказать его?

Перейти на страницу:

Все книги серии Просто о необычном и сложном

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука