Читаем Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство полностью

Закон больших чисел утверждает, что от очень маленькой выборки нельзя ожидать, что она будет отражать процесс в целом. Мы все об этом знаем и иногда шутим на эту тему (даже неспециалисты). Средняя американская семья состоит из 2,6 человека. Но кто мог бы себе представить такое в реальности?

Закон малых чисел Тверски и Канемана применим в области психологии. Он гласит, что мы безосновательно ждем от маленькой выборки отражения реальной ситуации. Если подбросить монету десять раз, то закон больших чисел свидетельствует о возможности получить смещенный результат, например, семь решек и три орла. Но люди думают иначе. Покажите им монетку, на их глазах семь раз из десяти упавшую решкой вверх, и большинство скажет, что с монетой что-то не так.

Я не утверждаю, что монета не может быть дефектной. Если из 1000 раз 700 выпал орел, то у монеты почти наверняка смещен центр тяжести. Но в семи из десяти нет ничего подозрительного, даже если это единственные данные.

Другими словами, мы ждем, что маленькая выборка будет похожа на персонажей телевизионного реалити-шоу: один увалень, одна глупая блондинка, один гей, один черный, один азиат и так далее. Они должны «представлять всю Америку». Но в так называемых реалити-шоу это делается намеренно. Случайная выборка из всего населения страны может оказаться смещенной в ту или иную сторону.

В статье, посвященной эффекту легкой руки, предлагается единая теория, описывающая как легкую руку, так и заблуждение игрока. Гилович, Валлоне и Тверски писали:

«Итак, представление о случайности, основанное на репрезентативности, лежит в основе двух связанных между собой предубеждений. Во-первых, оно порождает веру, что после длинной серии решек вероятность орлов выше – это знаменитое заблуждение игрока… Во-вторых, оно побуждает людей отрицать случайность последовательностей, содержащих ожидаемое число вариантов, поскольку даже, к примеру, четыре орла подряд – что вполне вероятно для последовательности из 20 бросков монеты – придают последовательности нерепрезентативный вид».

Что заставляет людей переходить от заблуждения игрока к теории легкой руки и наоборот? Столкнувшись с тем, что считается механическим и не подлежащим контролю со стороны человека, мы впадаем в заблуждение игрока. Но если задействована воля человека, мы предпочитаем верить в легкую руку.

Любитель азартных игр признает непредсказуемость маленького шарика, катящегося по колесу рулетки. И одновременно он верит в закон малых чисел. Единственный способ примирить эти два убеждения – вообразить Госпожу Удачу, притормаживающую колесо рулетки, чтобы после череды черных выпало красное, просто ради того, чтобы уравнять шансы. Это заблуждение игрока.

И наоборот, у баскетбольного болельщика нет причин верить в случайность игры. Ее ход определяется мастерством, стратегией и достижениями спортивной медицины (помимо удачи). Когда у игрока победная серия, нерепрезентативная в долговременном плане, просто поверить в загадочный эффект легкой руки.

В человеческой жизни вера в легкую руку, вероятно, играет бо́льшую роль, чем заблуждение игрока. Заблуждение игрока – это вера наивных людей, относящаяся в основном к оборудованию для азартных игр. Более информированные читатели могут презрительно фыркнуть при упоминании Госпожи Удачи, манипулирующей картами и игральными костями. Теория легкой руки применяется в отношении действий человека. И совсем не очевидно, что вера в легкую руку не имеет под собой оснований – и в баскетболе, и во всем остальном. Гилович не знал о ложности этого представления, пока не занялся исследованиями. Умные люди могут верить в легкую руку и на основании этой веры принимать важные решения.

Вы слыхали об оптимисте, падавшем с Empire State Building? Пролетев 50 этажей, он сообщил: «Пока все хорошо!»

Эта шутка может послужить хорошим введением к понятию эвристики репрезентативности. Канеман и Тверски придумали этот термин для описания тенденции верить, что ограниченный опыт отражает общую картину (эвристикой называют творческое, интуитивное мышление). Оптимист из шутки не имеет опыта падения с небоскребов, но уверен, что его короткий полет – пролетел 50 этажей целый и невредимый! – отражает уготованную ему судьбу.

Перейти на страницу:

Похожие книги

The Everything Store. Джефф Безос и эра Amazon
The Everything Store. Джефф Безос и эра Amazon

Эта книга – история успеха и расследование одновременно. Рассказ о том, как, пережив крах пузыря доткомов, Amazon сумел обойти конкурентов и начать свою беспрецедентную экспансию по странам и отраслям. Расследование того, как устроена одна из самых необычных на сегодняшний день компаний планеты, которой принадлежат не только самый известный интернет-магазин, но и фирмы робототехники, облачных технологий, космические проекты и СМИ.Джефф Безос – выдающийся бизнесмен, блестящий аналитический ум и жесткий организатор. Перед вами первая и весьма подробная биография этого неутомимого лидера и генератора идей, не признающего в бизнесе границ, традиций и стереотипов.Вы узнаете, чем живет Amazon сегодня и каковы его планы на ближайший, ХХI век, ведь «магазин всего» – далеко не окончательная ипостась компании Безоса. Какой она будет через несколько лет, предсказать невозможно: эта история пишется в наши дни.

Брэд Стоун

Деловая литература