Поставленный выше вопрос можно было бы переформулировать так: какова должна быть математическая подготовленность нематематика, желающего использовать в своей работе вероятностно-статистические методы? Этот вопрос приобретает особую остроту в связи с тем, что широкое развитие вычислительной техники позволяет обращаться к программам и совсем не подготовленным пользователям. Опасность такого рода деятельности состоит в том, что прикладная математика все же всегда остается дедуктивной наукой. Модель нельзя получить непосредственно из экспериментальных данных, не опираясь на предпосылки, привносимые исследователем. Скажем, нужно отчетливо понимать, что результаты кластер-анализа всегда несут в себе некоторую неопределенность — они зависят от метрики пространства, сконструированного исследователем (т. е. от выбора шкал, в которых представляются измерения). Или другой пример: нужно четко осознавать, что оценки коэффициентов регрессии в реальных задачах так называемого пассивного (т. е. непланируемого) эксперимента всегда все же оказываются смещенными в силу того обстоятельства, что никогда нельзя включить в рассмотрение все независимые переменные, ответственные за изучаемое явление. Можно поставить задачу и шире: всегда ли адекватны изучаемой ситуации исходные положения фишеровской концепции математической статистики?
Эту тему я многократно обсуждал с Андреем Николаевичем (дискуссии по этой теме время от времени вспыхивают в научных журналах).
Рассматривая эту тему, я предложил ввести новую междисциплинарную специализацию. Речь здесь шла о подготовке в Университете выпускников смешанного профиля — скажем, математически ориентированных биологов, психологов и пр. Соотношение изучаемых дисциплин — математических и предметных — могло бы быть
Специалист такого профиля мог бы выступать в роли консультанта, поддерживающего на должном уровне процесс математизации таких научных дисциплин, которые традиционно развивались, не опираясь на математические знания. Во многих зарубежных странах такой процесс давно начался. Там обрела право на существование такая специальность, как Специалисты этого профиля выступают не только в роли консультантов, но и в роли организаторов больших межклинических и межлабораторных исследований. Несколько лет назад подготовка специалистов по биометрике началась в бывшей ГДР (Ростокский университет, руководитель программы — профессор Д. Раш).В те годы Андрей Николаевич поддержал мое предложение. Сохранилось его письмо, содержащее детальное обсуждение математической составляющей такой программы.
Но реализовать этот замысел все же не удалось. Не поддержал его ректор — И. Г. Петровский. Резко отрицательно к нему отнеслись в тогдашнем Минвузе. Одна из руководящих сотрудниц этого Министерства раздраженно заметила: «А что же мы тогда напишем в дипломе?» Жесткая регламентация довлела надо всем, и в том числе над структурой университетского образования.
Теперь стало ясно, что подготовка специалистов междисциплинарного профиля может быть обоснована и с других, пожалуй, более серьезных позиций. Опыт показывает, что приложение математики в таких науках, как биология, психология, языкознание и социология, не должно ограничиваться решением только внешних задач операторного характера (обработка данных, планирование эксперимента). Здесь назревает задача создания своего собственного математизированного языка для построения аксиоматизированных теорий по аналогии с тем, как это произошло в физике. Существенно математизированным, как это мне представляется, должен стать язык для создания теории смыслов, так же как, скажем, язык, на котором могла бы быть построена теория проявления живого. Понимая роль представлений в современной физике, хочется думать о возможности введения аксиоматизированных представлений о биологических (морфофизио-логических) и семантических полях. Но трудно заранее представить себе, на какие разделы математики будут опираться эти представления. Можно сказать только одно — здесь нужны мыслители, знающие как предметную область, так и математику в широком раскрытии. Но работать в междисциплинарной области опасно — всегда можно попасть под удар со стороны представителей монодисциплинарного знания: их локальная эрудиция будет выше эрудиции полидисциплинарного исследователя. Опыт моей более чем 40-летней работы в прикладной вероятностно ориентированной математике показал мне, что как математики, так и представители конкретных наук стараются не уходить далеко за пределы их исходного образования.
Мысленно обращаясь к прошлым беседам с А.Н., я думаю, что в наши дни — дни становления нового — он включился бы в поиски путей подготовки ученых широкого профиля. Сам А.Н. не раз говорил, что он не только математик, но и естествоиспытатель.
Последний раз я был у А.Н. незадолго до его ухода из жизни. Эта беседа уже не могла быть продуктивной.