Читаем Капеллан дьявола: размышления о надежде, лжи, науке и любви полностью

ДНК переносит информацию очень по-компьютерному, и емкость генома тоже можно, если захочется, измерять в битах. В ДНК используется не двоичный код, а четверичный. В то время как в компьютере единица информации — это 1 или 0, в ДНК это Т, А, С или G. Сколько информации будет передано от меня к вам, если я сообщу вам, что в определенном месте последовательности ДНК стоит Г? Начнем с измерения априорной неопределенности. Сколько открыто возможностей до поступления сообщения “Г”? Четыре. Сколько возможностей остается после его поступления? Одна. Стало быть, можно подумать, что было передано четыре бита информации, но на самом деле их только два. И вот почему (исходя из того, что все четыре буквы встречаются с равной вероятностью, как четыре масти в колоде карт). Вспомним, что шенноновская мера касается наиболее экономного способа передачи сообщения. Представьте ее себе как число вопросов, предполагающих ответ “да” или “нет”, которые понадобилось бы задать, чтобы свести исходную неопределенность из четырех возможностей к определенности, если предположить, что вопросы будут сформулированы самым экономным способом. “Идет ли эта таинственная буква по алфавиту перед D)?”[123] Нет. Это сводит неопределенность к вариантам Т и G, и теперь нам понадобится только один дополнительный вопрос, чтобы узнать разгадку. Итак, в соответствии с этим методом измерения, информационная емкость каждой “буквы” ДНК составляет два бита.

Во всех случаях, когда априорную неопределенность знаний получателя можно выразить как число равновероятных альтернатив N, количество информации в сообщении, сводящем эти альтернативы к одной, составляет log2N (степень, в которую нужно возвести двойку, чтобы получить число альтернатив N). Если выбрать карту — любую карту — из обычной колоды, то сообщение, какая это карта, будет нести log252, или 5,7 бит информации. Иными словами, если бы мы сыграли в большое число игр на угадывание, нам потребовалось бы в среднем 5,7 вопроса, требующих ответа “да” или “нет”, чтобы угадать эту карту, при условии, что мы будем задавать вопросы самым экономным способом. Первые два вопроса позволили бы нам узнать масть (например, “Она красная?” и “Это бубны?”), а оставшиеся три или четыре — успешно разделить и проверить всю эту масть (“Старше шестерки?” и тому подобное), в итоге неминуемо придя к искомой карте. Когда априорная неопределенность представляет собой своего рода смесь альтернатив, которые не равновероятны, формула Шеннона преобразуется в немного усложненную формулу для расчета взвешенного среднего, которая, впрочем, по сути аналогична. Кстати, шенноновская формула взвешенного среднего — это именно та формула, которую физики с XIX века используют для расчета энтропии. Отсюда следуют интересные вещи, но здесь я не буду их рассматривать[124].

Этих сведений из теории информации будет достаточно. Эта теория давно привлекает меня, и я использовал ее в некоторых своих научных работах разных лет. Теперь давайте подумаем, как ее можно использовать, чтобы ответить на вопрос, увеличивается ли количество информации в геномах в ходе эволюции. Во-первых, давайте вспомним разницу между тремя понятиями: суммарной информационной емкости, реально использованной информационной емкости и настоящим количеством информации, записанной самым экономным из всех возможных способов. Суммарная информационная емкость человеческого генома измеряется в гигабитах. У обыкновенной бактерии кишечной палочки (Escherichia coli) она измеряется в мегабитах. Мы, как и все другие животные, происходим от предка, которого, если бы у нас сегодня была возможность его исследовать, мы отнесли бы к бактериям. Итак, за миллиарды лет эволюции, прошедшие со времени жизни этого предка, информационная емкость нашего генома могла вырасти где-то на три порядка (степени десятки) — примерно в тысячу раз. Это довольно правдоподобно и утешительно для человеческого достоинства.

Должны ли мы тогда чувствовать, что человеческое достоинство унижает тот факт, что у гребенчатого тритона (Triturus cristatus) емкость генома оценивается в сорок гигабит — на порядок больше, чем у человека? Нет, потому что большая часть емкости генома любого животного в любом случае не используется для хранения полезной информации. Существует множество нефункциональных псевдогенов (см. ниже) и множество повторяющихся бессмысленных последовательностей, полезных для судебно-медицинских экспертов, но не транслируемых в живых клетках в белки. У гребенчатого тритона “жесткий диск” вместительнее, чем у нас, но поскольку основная часть жесткого диска у обоих наших видов не используется, нам не стоит обижаться. У родственных гребенчатому видов тритонов геномы гораздо меньше. Зачем Создателю понадобилось так произвольно и нечестно разыграть размеры генома между тритонами — проблема, над которой могли бы поразмыслить креационисты. С эволюционной точки зрения все объясняется просто[125].

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное