Однако мы всегда вновь обнаруживаем асимметричную необходимость перехода от гладкого к рифленому и от рифленого к гладкому. Если верно, что странствующая геометрия и номадическое число гладких пространств постоянно инспирируют королевскую науку рифленого пространства, то, напротив, метрика рифленых пространств (meiron)
необходима для того, чтобы транслировать странные данные гладкого многообразия. Итак, трансляция — непростой акт: мало заменить движение пробегаемым пространством, нужна серия богатых и сложных операций (и Бергсон — первый, кто заговорил об этом). Трансляция более не является и вторичным актом. Это операция, состоящая, несомненно, в том, чтобы обуздать, сверхкодировать, метризировать гладкое пространство, нейтрализуя его, а также сообщая ему среду распространения, расширения, преломления, возобновления, стремительного роста, без коих оно, возможно, умерло бы само по себе — подобно маске, без которой оно не могло бы найти ни дыхания, ни общей формы выражения. Большая наука вечно нуждается во вдохновении, исходящем от малой науки; но малая была бы ничем, если бы не сталкивалась лицом к лицу с высшими научными требованиями и не проходила через них. Рассмотрим только два примера богатства и необходимости трансляции, заключающих в себе столько же шансов для раскрытия, сколько и опасностей, связанных с закрытием или остановкой. Прежде всего, сложность средств, с помощью которых мы транслируем интенсивности в экстенсивные количества или, более обобщенно, многообразия дистанции в системы величин, кои измеряют их и рифлят (роль логарифмов в связи с этим). С другой стороны — и главным образом, — тонкость и сложность средств, с чьей помощью кусочки гладкого риманова пространства обретают евклидову конъюнкцию (роль параллелизма векторов в рифлении бесконечно малого).[666] Мы не смешиваем коннекцию, присущую кускам риманова пространства («аккумуляция»), с евклидовой конъюнкцией пространства Римана («параллелизм»). Однако обе они связаны и преобразуются друг в друга. Ничего никогда не заканчивается: то гладкое пространство позволяет себе становится рифленым, то рифленое пространство возвращает себе гладкое — в случае необходимости с крайне разными ценностями, масштабами и знаками. Возможно, мы должны сказать, что любой прогресс достигается в рифленом пространстве и благодаря ему, но любое становление имеет место в гладком пространстве.