Gases deviate from ideal behavior at higher pressures, which forces molecules closer together. The closer they are, the more they can participate in intermolecular forces, which violate the definition of an ideal gas. As the temperature of a gas is reduced, the average velocity of the gas molecules decreases, and the attractive intermolecular forces become more significant. This results in the loss of another characteristic of an ideal gas, and thus less ideal behavior. Answer choices that include the opposite, high temperature and low pressure, are incorrect because gases behave most ideally under these conditions. At high temperatures, molecules will move quickly and exhibit random motion and elastic collisions, which is a property of ideal gases. In an ideal gas it is assumed that there are no intermolecular attractions between gas molecules, which is valid at low pressures when there is ample space between them.
2. D
Density equals mass divided by volume. The mass of 1 mole of neon gas equals 20.18 grams. At STP, 1 mole of neon occupies 22.4 L. Dividing the mass, 20.18 grams, by the volume, 22.4 L, gives an approximate density of 0.9009 g L-1
.3. C
Graham’s law of effusion states that the relative rates of effusion of two gases at the same temperature and pressure are given by the inverse ratio of the square roots of the masses of the gas particles. In equation form, Graham’s law can be represented by:
4. B
The pressure of the gas is calculated by subtracting the vapor pressure of water from the measured pressure during the experiment: 784 mm Hg - 24 mm Hg = 760 mm Hg, or 1 atm. The ideal gas law can be used to calculate the moles of hydrogen gas. The volume of the gas equals 0.100 L, the temperatures equals 298 K, and R = 0.0821 (L atm / mol K). Solving the equation
5. C
Ideal gases are said to have no attractive forces between molecules. They are considered to have point masses, which theoretically take up no volume.
6. C
The first thing to do is balance the given chemical equation. The coefficients, from left to right, are 1, 1, and 2. The mass of solid, 8.01 grams, can be converted to moles of gas product by dividing by the molar mass of NH4
NO3(7. A
The average kinetic energy is directly proportional to the temperature of a gas in Kelvin. The kinetic molecular theory states that collisions between molecules are elastic and thus do not result in a loss of energy. The kinetic energy of each gas molecule is not the same.
8. C
At STP, the difference between the distribution of velocities for helium and bromine gas is due to the difference in molar mass (
9. D
At STP, the pressure inside the balloon equals 1 atm. The total number of moles in the balloon equals 0.20 moles plus 0.60 moles, or 0.80 moles.
10. A
The ideal gas law can be modified to include density and determine the temperature of the sun.
The density is given in g/cm3
and must be converted to g/L so the units cancel in the above equation. Because 1 cm3 equals 1 mL and there are 1,000 mL in 1 L, the density can be multiplied by 1,000 to be converted to g/L.11. A