Atomic Weights and Isotopes
Key Concept
• Atomic number (
• Mass number (
• Number of protons = number of electrons (in a neutral atom).
ATOMIC WEIGHT
As we’ve seen, the mass of one proton is defined as approximately one amu. The size of the atomic mass unit is defined as exactly
Mnemonic
Mole Day is celebrated at 6:02 on October 23 (6:02 on 10/23) because of Avogadro’s number (6.02 × 1023
). We will revisit this number in Chapter 4 when we discuss moles in more detail.ISOTOPES
The term
In nature, almost all elements exist as two or more isotopes, and these isotopes are usually present in the same proportions in any sample of a naturally occurring element. The presence of these isotopes accounts for the fact that the accepted atomic weight for most elements is not a whole number. The masses listed in the periodic table are weighted averages that account for the relative abundance of various isotopes. See Figure 1.2 for the relative abundances in nature of the first several elements. Hydrogen, which is very abundant, has three isotopes.
Key Concept
Bromine is listed in the periodic table as having a mass of 79.9 amu. This is an average of the two naturally occurring isotopes, bromine-79 and bromine-81, which occur in almost equal proportions. There are no bromine atoms with an actual mass of 79.9 amu.
Figure 1.2
Example:
Element Q consists of three different isotopes, A, B, and C. Isotope A has an atomic mass of 40 amu and accounts for 60 percent of naturally occurring Q. The atomic mass of isotope B is 44 amu and accounts for 25 percent of Q. Finally, isotope C has an atomic mass of 41 amu and a natural abundance of 15 percent. What is the atomic weight of element Q?Solution:
0.60(40 amu) + 0.25(44 amu) + 0.15(41 amu) = 24.00 amu + 11.00 amu + 6.15 amu = 41.15 amuThe atomic weight of element Q is 41.15 g/mol.
Bohr’s Model of the Hydrogen Atom
We’ve come a long way from J. J. Thomson’s 1904 “plum pudding” model of the atom as negatively charged “corpuscles” (what we call electrons) surrounded by a density of positive charge that others (but not Thomson himself) likened to free-moving negatively charged “plums” suspended in a positively charged “pudding.” We kid you not; we couldn’t make this stuff up if we tried. In 1910, Ernest Rutherford provided experimental evidence that an atom has a dense, positively charged nucleus that accounts for only a small portion of the atom’s volume. Eleven years earlier, Max Planck developed the first quantum theory, proposing that energy emitted as electromagnetic radiation from matter comes in discrete bundles called