Titrations are accomplished by reacting a known volume of a solution of unknown concentration (called the titrand) with a known volume of a solution of known concentration (called the titrant). In acid-base titration, the equivalence point
is reached when the number of acid equivalents present in the original solution equals the number of base equivalents added, or vice versa. It is important to emphasize that, while a strong acid/strong base titration will have an equivalence point at pH 7, the equivalence point where
Bridge
This formula should remind you of Chapter 9 ... If not, turn back and take a look!
The equivalence point in an acid-base titration is determined in two common ways: either evaluated by using a graphical method, plotting the pH of the titrand solution as a function of added titrant by using a pH meter
(see Figure 10.1), or estimated by watching for a color change of an added indicator. Indicators are weak organic acids or bases that have different colors in their protonated and deprotonated states. Because they are highly colored, indicators can be used in low concentrations and therefore do not significantly alter the equivalence point. The indicator must always be a weaker acid or base than the acid or base being titrated; otherwise, the indicator would be titrated first! The point at which the indicator actually changes color is not the equivalence point but rather the end point. If the indicator is chosen correctly and the titration is performed well, the volume difference (and therefore the error) between the end point and the equivalence point is usually small and may be corrected for or simply ignored.Bridge
A useful set of compounds (indicators) will change color as it goes between its conjugate acid and base forms:
This allows us to use it to follow a titration, and we can see that since it is an equilibrium process that we can apply Le Châtelier’s principle. Adding H+
shifts equilibrium to the left. Adding OH- removes H+ and therefore shifts equilibrium to the right.Acid-base titrations can be performed for different combinations of strong and weak acids and bases. The most useful combinations are strong acid/strong base, weak acid/strong base, and weak base/strong acid. Weak acid/weak base titrations can be done but are not usually accurate (and therefore almost never performed), because the pH curve for the titration of a weak acid and weak base lacks the sharp change that normally indicates the equivalence point. Furthermore, indicators are less useful because the pH change is more gradual.
STRONG ACID AND STRONG BASE
Let’s consider the titration of 10 mL of a 0.1 N solution of HCl with a 0.1 N solution of NaOH. Plotting the pH of the reaction solution versus the quantity of NaOH added gives the curve shown in Figure 10.1.
Figure 10.1
Key Concept
Our tug-of-war analogy for a bond between two atoms can be recycled in a different way with titrations. Whichever is stronger (our acid or our base) will determine the equivalence point for the titration. Here they are equal, so the equivalence point is at a neutral pH.
Because HCl is a strong acid and NaOH is a strong base, the equivalence point of the titration will be at pH 7, and the solution will be neutral. Note that the end point shown is close to, but not exactly equal to, the equivalence point; selection of a better indicator, one that changes colors at, say, pH 8, would have given a better approximation. Still, the amount of error introduced by the use of an indicator that changes color around pH 11 rather than, say, pH 8 is not especially significant: a mere fraction of a milliliter of excess NaOH solution.