Elements in Groups I and II (Groups 1 and 2) have such relatively low ionization energies that they are called the active metals. The active metals never exist naturally in their neutral elemental (native) forms; they are always found in ionic compounds, minerals, or ores. The loss of one electron (from the alkali metals) or the loss of two electrons (from the alkaline earth metals) results in the formation of a stable, filled valence shell. As you might imagine from the trend, the Group VIIA (Group 17) elements, the halogens, are a miserly group of penny pinchers and aren’t willing to give up their electrons to anybody. In fact, in their monatomic ion form, they are found only as anions, having greedily taken one electron from another atom to complete their octets. As you might guess, the halogens have very large ionization energies and the smaller the halogen atom, the higher the ionization energy.
The only group less willing to give up their valence electrons is the inert elements (noble gases). They already have a very stable electron configuration and are unwilling to disrupt that stability by losing an electron. Inert gases are among the elements with the highest ionization energies.
ELECTRON AFFINITY
The greedy halogens are among the worst of the bunch of elements that tend to hoard their electrons toward themselves. These elements also tend to be very anxious to gain the number of electrons necessary to complete their octets. Like nervous little squirrels frantically running around in search of nuts to pack into their accommodating cheek pouches, these elements go in search of other atoms that are willing to give up their electrons. When a gaseous atom of a particular elemental identity gains one or more electrons to complete its octet, it relaxes and breathes a sigh of relief. This “sigh of relief ” is a release of a quantity of energy called the electron affinity. Because energy is released when an atom gains an electron, we can describe this process as exothermic
. By convention, the electron affinity is reported as a positive energy value, even though by the conventions of thermodynamics, exothermic processes have negative energy changes. Regardless of the sign, just remember that electron affinity isMnemonic
To recall the various trends, remember this: Cesium, Cs, is the largest, most metallic, and least electronegative of all naturally occurring elements. It also has the smallest ionization energy and the least exothermic electron affinity.
Mnemonic
In contrast to cesium, fluorine (F ) is the smallest, most electronegative element. It also has the largest ionization energy and most exothermic electron affinity.
ELECTRONEGATIVITY