Читаем Kaplan MCAT General Chemistry Review полностью

Although well beyond the scope of the MCAT, mathematical analyses of the wave function of the orbitals are used to determine and assign plus and minus signs to each lobe of the p-orbitals. The shapes of the five d-orbitals and the seven f-orbitals are more complex and need not be memorized for the MCAT. When two atoms bond to form a compound, the atomic orbitals interact to form a molecular orbital that describes the probability of finding the bonding electrons. Molecular orbitals are obtained by combining the wave functions of the atomic orbitals. Qualitatively, the overlap of two atomic orbitals describes this. If the signs of the two atomic orbitals are the same, a bonding orbital forms. If the signs are different, an antibonding orbital forms.


Two different patterns of overlap are observed in the formation of molecular bonds. When orbitals overlap head-to-head, the resulting bond is called a sigma ( ) bond. Sigma bonds allow for relatively free rotation, because the electron density of the bonding orbital is a single linear accumulation between the atomic nuclei. When the orbitals overlap in such a way that there are two parallel electron cloud densities, a pi () bond is formed. Pi bonds do not allow for free rotation because the electron densities of the orbital are parallel. To picture this difference, imagine pushing your fists together and rotating them as they touch—this is a sigma bond. Now imagine putting your arms out in front of you, holding them parallel to each other with your elbows bent at about right angles while another person slips two rubber bands around your forearms, one near the elbows and the second closer to the wrists. With the rubber bands on, try bringing one forearm up toward you while you extend your other forearm out away from you. The parallel tension provided by the rubber bands makes it quite difficult to rotate your forearms in opposite directions. This is a pi bond.

Bridge

The pi bonds of alkenes, alkynes, aromatic compounds, and carboxylic acid derivates are what lend the ever-important functionalities in organic chemistry.



The Intermolecular Forces




Like guests at a cocktail party who mingle but ultimately have little to say to each other, atoms and compounds participate in weak electrostatic interactions. The strength of these intermolecular interactions can impact certain physical properties of the compounds, such as melting and boiling point. The weakest of the intermolecular interactions are the dispersion forces, also known as London forces. Next, are the dipole–dipole interactions, which are of intermediate strength. Finally, we have the strongest type of interaction, the hydrogen bond, which is a misnomer because there is no sharing or transfer of electrons, and consequently, it is not a true bond. We must keep in mind, however, that even hydrogen bonds, the strongest of these interactions, have only about 10 percent the strength of a covalent bond, so these electrostatic interactions can be overcome with additions of small or moderate amounts of energy.

Bridge

These intermolecular forces are the binding forces that keep a substance together in its solid or liquid state (see Chapter 8). These same forces determine whether two substances are miscible or immiscible in the solution phase (see Chapter 9).



LONDON FORCES


The bonding electrons in nonpolar covalent bonds may appear, on paper, to be shared equally between two atoms, but at any point in time, they will be located randomly throughout the orbital. For these instantaneous moments, then, the electron density may be unequally distributed between the two atoms. This results in rapid polarization and counterpolarization of the electron cloud and the formation of short-lived dipole moments. These dipoles interact with the electron clouds of neighboring compounds, inducing the formation of more dipoles. The momentarily negative end of one molecule will cause the closest region in any neighboring molecule to become temporarily positive itself, thus causing the other end of this neighboring molecule to become temporarily negative, which in turn induces other molecules to become temporarily polarized, and the entire process begins all over again. The attractive interactions of these short-lived and rapidly shifting dipoles are called dispersion forces or London forces.

Real World

While London forces (a type of van der Waals force) are the weakest of the intermolecular attractions, when there are millions of these interactions, as there are on the bottom of a gecko’s foot, there is an amazing power of adhesion, which is demonstrated by the animal’s ability to climb smooth vertical, even inverted, surfaces.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии