The key to answering this question is to understand the types of intermolecular forces that exist in each of these molecules. Kr (III) is a noble gas with a full octet, so the only intermolecular forces present are dispersion forces (also called London forces), the weakest type of intermolecular forces. This means that these molecules are held together extremely loosely and will be the easiest to transition from the organized liquid phase to the disorganized gaseous phase. In fact, because Kr is a noble
5. C
The central atom in CO3
, carbon, has no lone pairs. It has three resonance structures, each of which involves a double bond between carbon and one of the three oxygens. Having made four bonds, carbon has no further orbitals for bonding or to carry lone pairs. This makes CO3’s geometry trigonal planar. Alternatively, ClF3 also has three bonds, one to each of three fluoride atoms. However, chloride still maintains two extra lone pairs (without which the formal charge on the central chloride atom is +4; with the two lone pairs it is zero, a more stable configuration). These lone pairs each inhabit one orbital, meaning that the central chloride must organize five items about itself: three bonds to fluorides and two lone pairs. The best configuration for maximizing the distance between all of these groups is trigonal bipyramidal. (A) is true but does not account for the difference in geometry. Similarly, although (B) is true, the charge does not explain a difference in geometry. (D) is incorrect; CO3 has no lone pairs on its central atom, while ClF3 has two lone pairs.6. A
The best way to approach this problem is to draw the structure of each of these molecules, then consider the electronegativity of each bond as it might contribute to an overall dipole moment. HCN is the correct answer because of large differences in electronegativity, aligned in a linear fashion. There is a strong dipole moment in the direction of nitrogen, without any other moments canceling it out. H2
O has two dipole moments, one from each hydrogen pointing in the direction of oxygen. The molecule is bent, and the dipole moments partially cancel out. There7. D
Bond lengths decrease as the bond order increases, and they also decrease in a trend moving up the periodic table’s columns or to the right across to the periodic table’s rows. In this case, because both C2
H2 and NCH have triple bonds, we cannot compare the bond lengths based upon bond order. We must then rely on other periodic trends. The bond length decreases when moving to the right along the periodic table’s rows because more electronegative atoms have shorter atomic radii. The nitrogen in NCH is likely to hold its electrons closer, or in a shorter radius, than the carbon in C2H2. (B) is incorrect because there are no significant resonance structures contributing to the character of either triple bond. (C) expresses a true statement but one that is irrelevant to the length of the carbon–carbon triple bond.8. C