Читаем Капля полностью

Можно представить явление, которое выглядит диамет­рально противоположно описанному выше: жидкая капля, брошенная с большой скоростью и под малым углом на по­верхность кристалла, скачет по этой поверхности. Такое явление должно иметь место и наблюдается, например, тогда, когда из брандспойта поливают асфальт. В самом конце струи, там, где асфальт еще не смочен водой, можно наблюдать скачущие капли. Они оставляют на асфальте мокрые пятнышки. Капель много, и очень скоро становит­ся невозможным проследить за последовательностью пят­нышек, оставляемых одной каплей.

Недавно в нашей лаборатории совершенно неожиданно студент-дипломник наблюдал капли, скачущие по твердой поверхности, когда ставил эксперименты по взрыву металлических проволочек, вплавленных в кри­сталл каменной соли.

Эксперимент заключался в следующем. Через прово­лочку импульсно пропускался электрический ток боль­шой силы, и она взрывалась. Затем с помощью микроско­па исследовалась структура области кристалла вблизи взорвавшейся проволочки. При некоторых условиях осу­ществления взрыва кристалл растрескивался, и на оголив­шихся поверхностях можно было наблюдать пунктирные линии, состоявшие из пятнышек, которые оставила скачущая капля расплавленного металла проволоки.

 

Пунктирная последовательность следов во всех случаях завершалась каплей, которая, израсходовав свою энер­гию в скачках, прилипла к поверхности и закристаллизо­валась на ней.

По фотографиям можно проследить некоторые особенно­сти скачкообразного движения капли на поверхности кристалла. Но прежде чем это сделать — немного теории.

Допустим, что жидкая капля, радиус которой R , падает на плоскую поверхность под малым углом между по­верхностью и направлением скорости. Если бы капля обладала свойствами абсолютно упругого тела, т. е. без потерь энергии отражалась от поверхности кристалла по закону «угол падения равен углу отражения» и воздух не препятствовал ее полету, она скакала бы по его поверх­ности сколь угодно долго и длина скачка l оставалась бы неизменной. Эту длину легко вычислить. Воспользуемся обозначениями, которые указаны на рисунке. Очевидно, в направлении, параллельном поверхности кристалла, капля, имея скорость 1 = 0 cos , будет лететь в течение всего того времени, которое понадобится ей для того, чтобы в поле земного тяготения вначале подняться от по­верхности на максимальную высоту, а затем с этой высоты спуститься на поверхность кристалла. Это время -

= 2 1 / g

В приведенных формулах мы воспользовались тем, что мало. Только в этом случае можно считать, что cos 1 , a sin .

Так было бы, если бы выполнялись обусловленные иде­альные обстоятельства. В действительности капля, пры­гая по твердой поверхности, теряет энергию. Во-первых, полету препятствует воздух и часть энергии расходуется на преодоление его сопротивления. Во-вторых, в момент удара капля вязко деформируется, а затем, оттолкнув­шись от поверхности, восстанавливает свою форму. И на это необходима энергия. В-третьих, в каждой точке, где капля коснулась твердой поверхности, остается жид­кое пятнышко. Его появление можно представить себе как отщепление от капли жидкой пластинки, т. е. появ­ление двух свободных поверхностей жидкости, площадь каждой из которых равна площади оставленного пятныш­ка. При этом расходуется энергия Ws = 2а• S , где S — площадь пятнышка. Точно учесть все потери энергии ска­чущей капли — дело совсем не простое, так как они зависят от очень многого: скорости полета, массы капли, вязкости и поверхностного натяжения вещества капли. Величина этих потерь изменяется от скачка к скачку. Если сделать заведомо упрощающее предположение, что в каждом очередном скачке капля теряет одну и ту же энергию W , изменяя при этом массу незначительно, можно определить длину n-го скачка (l п) с помощью фор­мулы, которая следует из предыдущей:

 

Полученная формула свидетельствует о том, что каждый следующий скачок должен быть короче предыдущего. Кроме того, из нее следует, что общее число скачков не может быть больше, чем п* = W 0 / W . Фотографии подтвержда ют сделанные выводы: последующий скачок действительно короче предыдущего, и число скачков ограничено.

Так как конец пути капли на фотографиях запечатлен достовернее начала, можно надежно выяснить судьбу капли, прослеживая ее траекторию в направлении, про­тивоположном направлению полета. Оказывается, что перед самым финишем на последнем этапе капля (которая изображена на приведенной фотографии) весила всего 4 . 10-8 г и имела энергию ~3 . 10- 6 эрг, т. е. ее скорость была немногим больше 10 см/сек.

Жидкая металлическая капля скачет по поверхности кристалла соли

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг