Читаем Капля полностью

того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.

Вспомним о капле — она вся ограничена изогнутой по­верхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельви­на: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйн­штейном, восхитимся талантом Кельвина — его проница­тельным умом и великолепной логикой.

<p><style name="a5"><strong>Капля пустоты</strong></style></p>

Много лет подряд вместе с моим покойным учителем Бори­сом Яковлевичем Пинесом мы занимались изучением по­ристых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожа­лению, спросить уже некого и остается лишь стро­ить догадки, сопоставляя факты и отрывки случайных раз­говоров.

Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыс­лить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рож­дения образа капли пустоты можно проследить, как вя­жется логическое кружево мысли ученого, где сосущест­вуют и конкурируют фантазия и строгая формальная ло­гика.

Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина — образование дву­мерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, числен­ная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула — это математика, а математика, как известно, наука точ­ная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.

 

Перейти на страницу:

Похожие книги