Это воспоминание подсказало идею, с помощью которой можно было измерить температуру плавления крупинки. Опыт заключался в следующем. На тщательно отполированной пластинке кварца располагалась крупинка. Сверху ее накрывали другой пластинкой кварца, которая, касаясь крупинки, образовывала некоторый угол с первой пластинкой. Это устройство нагревали, и в тот момент, когда крупинка расплавлялась, верхняя пластинка раздавливала образовавшуюся каплю и угол между пластинками скачкообразно уменьшался. Чтобы надежнее этот момент зарегистрировать, на внешнюю поверхность верх^ ней пластинки нанесли зеркальное покрытие и следили за тем, как отражаемый от нее луч скачком смещается. Пластинка, меняющая свое положение, была подобна металлическому стержню, который наклонялся, свидетельствуя о начале процесса плавления. Так как масса крупинки пренебрежимо мала по сравнению с массой кварцевых пластинок, между которыми она зажата, температура крупинки равна температуре пластинок и, следовательно, измерить ее весьма просто.
В описанном опыте, вопреки известной пословице, нам удалось убить двух зайцев: определить, во-первых, температуру плавления и, во-вторых, величину поверхностного натяжения расплавленного вещества. Дело в том, что верхняя пластинка, раздавливая своей тяжестью каплю, превращала ее в лепешку определенной толщины. Сколько раз ни повторялся бы опыт по расплавлению одной и той же крупинки, образовывавшаяся жидкая капля весом пластинки расплющивалась до одной и той же толщины Эту величину можно было уменьшить, увеличивая вес верхней пластинки. Легко понять, что дальнейшему
расплющиванию препятствуют силы поверхностного натяжения, приложенные к той части поверхности расплющенной капли, которая граничит с воздухом. В наших опытах вещество капли практически не смачивало кварц (именно поэтому опыты и ставились с кварцевыми пластинками) и, следовательно, можно считать, что радиус закругления свободной поверхности
Величина поверхностного натяжения может быть определена из условия равенства давления, которое оказывает пластинка на жидкую каплю
Величины и можно измерить с большой точностью, а силу легко определить, зная вес верхней пластинки.
Способ решения стоящей перед нами задачи, который подсказала возникшая вдруг аналогия, конечно же, был не единственно возможным. Видимо, можно было придумать и иные приемы, но нас привлекла в нем неожиданность аналогии и возможность опровергнуть пословицу о двух зайцах.
Что там творится в мире заоконном?
Зима в исходе, видно по всему.
Давайте вместе слушать, как со звоном
Летит сосулька из зимы в весну.
Расскажу об одном очень простом опыте, который когда- то в нашей лаборатории был поставлен и заснят на кинопленку. «Героем» фильма, естественно, была капля.
Начну с предыстории, с «общих соображений». Во многих учебниках физики утверждается, что жидкость смачивает твердое тело того же вещества: жидкая медь — твердую медь, вода — лед. Это означает, что если бы, например, на поверхности твердой меди поместить каплю жидкой меди, она должна была бы растечься по ней тонким слоем. Утверждается, что это веществу «выгодно», поскольку при этом его поверхностная энергия уменьшается, т. е. что поверхностная энергия твердой меди на границе с парами меди больше, чем сумма энергий на границе твердая медь — жидкая медь и жидкая медь — пары меди. Разумеется, медь — это лишь пример. Имеется в виду, что утверждение справедливо применительно ко многим веществам.
Если авторы учебников физики не заблуждаются, то смачивание твердого тела жидким должно проявлять себя во многих явлениях. Ведь это означает выгодность наличия жидкой пленки на поверхности твердого тела. Чуть курьезно об этом можно сказать так: твердым телам выгодно быть мокрыми. Но окружающие нас твердые предметы сухи, если, разумеется, мы их специально не смочим. Впрочем, и смочить их не просто, так как смачивать надо жидкостью того же вещества, что и твердое тело, а такая жидкая пленка на твердом теле быстро кристаллизуется и, присоединившись к нему, становится твердой.