Читаем Кара небес, или Правда о Тунгусской катастрофе полностью

Шестое крамольное заключение

Итак, что мы имеем?

• Метеорит летел и дробился в полете, выбрасывая во все стороны фрагменты. Причем начальная скорость этих фрагментов могла достигать 100–200 м/с. Это весьма существенно, всего лишь в 2 раза меньше скорости звука. Если бы скорости были ниже, наблюдатели видели бы просто объект с длинным хвостом, а не лохматое облако 3–6 км в диаметре.

• Ни одного кусочка Тунгусского метеорита до поверхности Земли не долетело. Можно было бы считать, что они просто сгорели во время полета. Однако взрыв произошел над болотом. Болотная жижа должна была погасить горение упавших в болото фрагментов. Стоит ли упоминать, что болото избороздили и вдоль и поперек, но ничего не нашли.

• На высоте крон деревьев взрывы все еще происходили. Невозможно, чтобы микрочастицы смогли пройти путь в 10 км и еще были способны пробить кору деревьев. Эти микрочастицы должны были выброситься при низких взрывах.

На основании этих данных В. Скреба сделал очередное, шестое по счету, крамольное заключение:

Вещество Тунгусского метеорита (опять же если мы допускаем, что тело было именно метеоритом) не могло достичь земной поверхности. Оно натыкалось на какой-то непонятный барьер, препятствовавший этому. Существование вещества Тунгусского метеорита оказалось несовместимым с условиями как земной атмосферы, так и земной гидросферы. То есть фрагменты метеорита либо сгорели в атмосфере, либо разложились в воде. Они состояли из элементов, не устойчивых в воздушной и водной среде.

Мне кажется, что все дело в водороде. Ученых давно интересует вопрос: почему углистые хондриты бедны водородом? Если в них соотношение элементов близко к составу солнечной системы, то почему так мало водорода? В веществе Солнца водород составляет свыше 70 % по массе. Вероятно, на земную поверхность могут выпадать только те углистые хондриты, которые потеряли водород в процессе своей эволюции.

Возможно, что в Тунгусском метеорите водород находился в том числе и в виде солей щелочных металлов.

Если при нагревании из неустойчивых структур водород выходит в атомарном виде, то все становится на свои места. Атомарный водород обладает повышенной активностью. Он легко вступает в реакции, но самое главное, что при этом выделяется большое количества тепла [17].

Правда, если эти предположения верны, то диаметр летящего тела может оказаться почти 200 м.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже