Считается, что обогащают Вселенную тяжелыми элементами от натрия до германия (включая железо) звезды с массами от 12 до 25 солнечных. Звезды поменьше, с массами в 8—12 солнечных элементов группы железа образуют мало. Зато появляются более тяжелые элементы. Когда чудовищные силы гравитации сжимают ядро звезды, ядра атомов буквально спрессовываются друг с другом. Электроны, оказавшись в ловушке, вдавливаются в ядра и сливаются с протонами, превращая их в нейтроны. При этом выделяются нейтрино – трудноуловимые частицы, которые обычно легко пронизывают всю толщу звезды и уходят в космос. Возникает так называемый нейтринный ветер. Подобно тому, как давление света в массивных звездах приводит к истеканию вещества в виде звездного ветра, нейтрино увлекают протоны и нейтроны. В веществе образуется избыток нейтронов, которые могут проникать в ядра, формируя все более и более тяжелые изотопы. Из-за огромного потока нейтронов ядра ими буквально переполняются, отчего становятся крайне нестабильными и начинают очень быстро избавляться от избыточной нейтронизации – нейтроны в них превращаются в протоны. Но едва только это происходит, как новые волны нейтронов опять доводят ядра «до предела». Такое превращение получило название r-процесса (от англ. rapid – «быстрый»). Ее итогом становятся ядра всех масс вплоть до самых тяжелых. В r-процессе образуются, например, платина и актиноиды – тяжелые радиоактивные элементы, к которым относится, в частности, уран. Относительное содержание изотопов последнего, равно как и тория, часто используют для оценки возраста звезд. Также в ветре новорожденной нейтронной звезды могут идти реакции с участием заряженных частиц – протонов и ядер гелия, – увлеченных потоком нейтрино. Так образуются цирконий, серебро, йод, молибден, палладий и многие другие элементы. Теория всех этих процессов очень сложна и не однозначно признана. Причем речь тут не только об астрофизических эффектах, но и о неопределенностях в рамках ядерной физики – далеко не все параметры идущих на данном этапе реакций точно определены. Продолжаются и споры ученых относительно того, может ли этот сценарий претендовать на полноту: способен ли он объяснить рождение тяжелых элементов в наблюдаемых нами пропорциях. «Мир рвался в опытах Кюри огромной ядерной бомбой…» Эти слова поэта Андрея Белого оказались пророческими. Первый шаг в освобождении ядерной энергии был сделан в опытах Фредерика и Ирен Жолио-Кюри. Было установлено, что все элементы тяжелее висмута (атомный номер 83) радиоактивны, и они распадаются. Можно достаточно точно оценить, каким периодом полураспада должен обладать изотоп, чтобы «дожить» до наших дней. Изотоп можно считать исчезнувшим, если с момента его рождения прошло более 10 периодов полураспада. При этом его количество уменьшается в 210 ≈ 1000 раз; его останется менее 0,1% от исходного. Возраст Земли оценивается в 4,6 миллиардов лет, или ≈ 1,5 · 1017
секунд. Шансы уцелеть с момента образования нашей планеты имеют только торий с периодом полураспада 4,5 · 1017 секунд и уран с периодом полураспада 2,2 · 1016 секунд. Космическая пыль не могла быть источником возникновения Солнечной системы, так как она возникает при истечении плазмы из атмосфер звезд, а также при взрывных процессах на звездах и бурном выбросе газа из ядер галактик. Она в космическом пространстве существует миллиарды лет, а потому в ней не могут сохраниться радиоактивные вещества. Этого достаточно для опровержения гипотезы образования Солнечной системы из газопылевой туманности.Радиоактивные элементы показывают, что на Земле сейчас не было бы даже их следов. Вместе с тем, их распространённость в земной коре близка к распространённости свинца, бериллия и других элементов, отнюдь не считающихся редкими. Уран – довольно распространённый, но очень рассеянный элемент. В двадцатикилометровом слое Земли содержится 1014 тонн урана. Энергия его распада эквивалентна 2,36 · 1024 кВт · ч, что во много миллионов раз превышает теплосодержание всех разведанных горючих ископаемых и возможности гидроэнергетики.