Читаем Карнавал молекул. Химия необычная и забавная полностью

Обратите внимание, Яги выбрал те из дикарбоновых кислот, молекулы которых представляют собой жесткие палочки, собранные из бензольных ядер. Основная цель – создать из них жесткие недеформирующиеся ячейки. При этом размер ячейки зависит от «длины» дикарбоновой кислоты. Таким образом, он предложил простой и удобный способ изменять размер ячейки. На рисунке 1.67 показаны только одиночные ячейки, которые в реальности соединены между собой в крупную объемную структуру.

В природных цеолитах внутренние каналы изолированы друг от друга алюмосиликатными стенками, а в полученных металлорганических каркасах таких стенок нет и пространство каждой ячейки сообщается с соседними, что обеспечивает большой внутренний объем – поры в таком веществе составляют свыше 90 % объема. Понятно, что и плотность у такого материала необычайно низкая – 0,2–0,4 г/см3.

Искусственные структуры заметно превзошли природные, они могут, например, поглощать и удерживать втрое больший объем метана, чем алюмосиликатные цеолиты. Чтобы метан удерживался в ячейке, необходимо сделать каркас «привлекательным» для газа. Этого можно добиться, введя в структуру исходных дикарбоновых кислот углеводородные «хвосты» в виде групп – ОС3Н7 или – ОС5Н9. Такие каркасы вообще легко модифицировать, присоединяя к бензольным ядрам в исходных дикарбоновых кислотах различные полярные группы (например, – Br, – NH2 и др.), что заметно изменяет химическую природу ячеек и, следовательно, их адсорбционные («удерживающие») свойства.

Омар Яги провел по-настоящему масштабные исследования, он использовал несколько десятков различных дикарбоновых кислот, а в качестве исходных неорганических солей помимо Zn также соединения Cu и Mn. Оказалось, что такие соединения остаются долгое время стабильными в воде или органических растворителях и не разлагаются при высокой температуре, что позволяет использовать их в качестве различных поглотителей (например, в сильно нагревающихся энергетических установках). Яги предложил назвать соединения такого типа металлорганическими решетками (metal-organic frameworks, MOF).



Разработанный метод позволяет создавать практически неограниченное количество решеток. Омар Яги вместо дикарбоновых кислот использовал соединение, содержащее фрагмент борной кислоты. Они тоже могут служить разветвляющими центрами наряду с цинксодержащими узлами (рис. 1.68).



Такие структуры Яги назвал сверхпористыми MOF, поскольку 1 г такого вещества способен удерживать 2500 мл азота (или СО2), или 250 мл метана, или 100 мл водорода.

Фантазия Омара Яги на этом не остановилась, и он создал решетку без атомов металла, собранную из легких атомов Н, В, С, О. Поскольку каркас в этом случае образован только с помощью ковалентных связей (без координационных), он предложил назвать их ковалентными органическими решетками (covalent organic frameworks, COF).

Один из примеров приведен на рисунке 1.69. Исходное соединение – разветвленная молекула с четырьмя фенильными группами, наружу выступают остатки борной кислоты. Вся молекула условно обозначена тетраэдром. Второй компонент – разветвленная ароматическая молекула, содержащая группы – OH у бензольных ядер (она обозначена треугольником).

Взаимодействие проходит между группами – OH бора и фенильных групп (рис. 1.70).



При взаимодействии трех молекул-тетраэдров с треугольником образуется разветвляющий узел – паукообразная молекула (рис. 1.71).



Затем такие узлы объединяются, образуя объемную решетку (рис. 1.72).



Вещества подобного типа стабильны до 400°, а из-за того, что отсутствуют тяжелые атомы металлов, плотность решетки рекордно низкая – до 0,17 г/см3. Такие вещества «легче» одного из самых «воздушных» материалов – вспененного полиэтилена, плотность которого 0,3–0,4 г/см3, только газы имеют меньшую плотность.

Можно предположить, что Яги решил также отдать «дань уважения» природным цеолитам, с которых и начинались поиски. Он синтезировал структуры с цилиндрическими каналами, как у обычных цеолитов, но вместо дикарбоновых кислот (жестких прямых палочек) использовал азотсодержащие соединения – имидазолы (рис. 1.73).

Форма молекул имидазолов позволила «свернуть» образующиеся решетки в цилиндры (рис. 1.74).

Такие «сетки» оказались эффективными для разделения газов: метана CH4 и углекислого газа СО2. Яги назвал эти структуры цеолитными имидазольными решетками (zeolitic imidazolate frameworks, ZIF).

Подводя итог, отметим, что Омар Яги проявил впечатляющую изобретательность при конструировании решеток и искусственных пористых структур (рис. 1.75).

Естественно, его публикации вызвали целый поток подобных работ, которые запестрели ажурными структурами (рис. 1.76).



Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии