Вначале были получены циклические лиганды С5
Н5, содержащие нужные хелатные «хвосты», на концах которых расположены O, N, S, или P, они должны координировать центральный атом металла и тем самым защитить его. Получение таких молекул было результатом заранее тщательно продуманных трех- или четырехстадийных синтезов.В качестве каталитического центра был выбран цирконий, поскольку в этом случае можно было ожидать более высокую активность, что, впрочем, не означает, что исследования Ti и Hf менее интересны. Присоединение лиганда к атому металла традиционное – взаимодействием литийпроизводного цикла С5
Н5 с галогенидом металла ZrCl4. При замещении одного атома Cl у Zr происходит образование полусэндвича (однослойный бутерброд), а при замещении следующего – полный сэндвич (двухслойный бутерброд) (рис. 3.25).Именно такая простая реакция приводит к сэндвичевым соединениям, где атом металла связан не с конкретным углеродным атомом в лиганде, а со всем циклом сразу; в данном случае все определяет химическая природа лиганда. Обратите внимание, циклопентадиенильные циклы расположены у атома циркония не параллельно, они приоткрывают металл «с одного бока», приглашая к цирконию хелатные группы или иные реагенты.
Поскольку речь идет о новых соединениях, то невозможно заранее угадать, насколько плотно следует укрывать атом Zr, чтобы защитить его от возможного окисления, вполне вероятно, что одной хелатирующей группы будет вполне достаточно, а потому следовало запланировать различные варианты. Можно, например, синтезировать полусэндвич с одним C5
H5-циклом, а из полусэндвича можно также получить «полные» сэндвичи, причем с одной или двумя хелатирующими ветвями (рис. 3.26).Далее в рисунках будем обозначать метильные группы у циклического лиганда упрощенно, в виде валентных черточек (не указывая символ Ме).
«Примерив» разнообразное облачение, цирконий обнаружил особенности своего характера. В полностью завершенных сэндвичах (с двумя циклическими лигандами) цирконий чувствовал себя вполне комфортно и не проявлял интереса к хелатирующим группам, двух присоединенных атомов хлора ему было вполне достаточно.
Атом отвечает на вопросы
Пройденный этап – это половина работы: получены соединения с хелатной защитой, но пока атом циркония не надо защищать, поскольку он находится в своей «любимой» степени окисления Zr4+
. Впереди более интересный этап – восстановление полученных комплексов, т. е. превращение Zr4+ в Zr2+, для этого у него необходимо забрать два атома Cl. Именно Zr2+ будет, как ожидается, очень активным и сможет разрывать различные связи. Восстановление проводили амальгамой магния (сплав Mg и Hg), этот реагент легко забирает атомы Cl от Zr4+, превращая его в Zr2+. Забегая вперед, можем сказать, что цирконий полностью оправдал проявленный к нему интерес, а в некоторых случаях сумел удивить.Одно свойство циркония проявилось сразу: образующийся при восстановлении Zr2+
крайне неустойчив, стремится перейти в исходное состояние Zr4+ и использует для этого все, что находится рядом, т. е. в первую очередь расположенные рядом группы Chel.В том случае, когда Chel = ОМе, цирконий отрывает метильную группу от атома кислорода и присоединяет ее к себе, как и наполовину освободившийся атом кислорода, т. е. заполняет те пустые места, на которых ранее находились атомы Cl (рис. 3.27).
В тех случаях, когда Chel = SМе, цирконий присоединяет два атома серы и делает все крайне энергично. На это указывает одно обстоятельство: две освободившиеся метильные группы, взаимодействуя с амальгамой магния, образуют реактив Гриньяра MeMgCl как побочный продукт реакции (указан под стрелкой). Можно себе представить, сколь энергетически выгодно присоединение к цирконию двух атомов серы, если при этом дополнительно образуется исключительно реакционное вещество – реактив Гриньяра (рис. 3.28).
В том случае, когда Chel = NМе2
, цирконий демонстрирует иное поведение: он не отрывает метильную группу от азота, а разрывает связь С – Н именно в этой метильной группе (рис. 3.29).Это уже достаточно близко к поставленной цели, но все же метильная группа у азота не аналогична той же группе в углеводородах.
Наиболее интересные превращения можно наблюдать при восстановлении комплексов, где Chel = РМе2
. Цирконий не стал привлекать для взаимодействия метильные группы, связанные с фосфором, а использовал другую метильную группу, ту, что находится рядом – в обрамлении циклопентадиенильного цикла. В данном случае произошел разрыв «настоящей» связи С – Н.Интересно, что здесь хелатная группа работает по прямому назначению: не участвует в реакциях с цирконием, а только прикрывает его, заполняя координационную сферу металла (координационная связь обозначена пунктирной стрелкой на рис. 3.30).
Все рассмотренные превращения показывают, что комплексы Zr2+
неустойчивы и переходят в соединения Zr4+, реагируя с теми группами, которые ему услужливо протягивают «клешни», или привлекая метильные группы СН3 у цикла.